
1

SUPPORTING INFORMATION

Towards Rational Nanomaterial Design by Prediction of 

Drug-Nanoparticle Systems Interaction vs. Bacteria Metabolic Networks 

Karel Diéguez-Santana 1, Bakhtiyor Rasulev 2, and Humberto González-Díaz 1,3,4 *

1 Department of Organic and Inorganic Chemistry, 

University of Basque Country UPV/EHU, 48940 Leioa, Spain.
2 Department of Coatings and Polymeric Materials, 

North Dakota State University, Fargo, ND, 58102, USA,
3 BIOFISIKA, Basque Center for Biophysics CSIC-UPVEH, 48940 Leioa, Spain.
4 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain.

ChEMBL AD, NP, and MRN datasets. The ChEMBL dataset use here includes >160 000 outcomes of AD 
preclinical assays for 55 931 compounds. Each compound have the outcome of at least 1 out of >300 biological 
activity parameters (MIC, IC50, etc.). Each compound was assayed against at least 1 out of >90 bacteria strains of 
>25 bacterial species. The chemical structure of each AD candidate compound was encoded into a vector of 
molecular descriptors Ddk = [Dd1, Dd2, Dd3]. The elements of this vector are the molecular descriptors of the ith 
compound: Dd1 = Logarithm of the n-Octanol/Water Partition coefficient (LOGPi), Dd2 = Topological Polar 
Surface Area (PSAi), Dd3 = Number of Violations of Lipinski’s Rule (NVLRi). The specific labels or conditions 
of each assay were encoded into the vectors cdj = [cd0, cd1, cd2]. The elements of these vectors are cd0 = name of the 
biological parameter (MIC, IC50, etc.)  cd1 = name of the bacteria specie, cd2 = label or code of the bacteria strain. 
Please do not confuse numeric value f the biological activity parameter vij with the name of the biological activity 
parameter cd0. This dataset was obtained from a previous dataset reported before by our group after a new 
verification and pre-processing.1 The NP dataset with the outcomes of Nn = 300 pre-clinical assays of metal, 
metal salt, and metal oxide NPs against different bacteria species (s).2 The NP assays have multiple experimental 
variables conditioning the nature of the assay cnj. We listed all the specific conditions of one assay as a vector cnj 
= [cn1, cn2, cn3 ….. cnmax].  It includes the report of 1 out of 4 possible NP action parameters for 34 possible 
bacteria/strains. The data also contains NP shapes, NP physicochemical properties, NP coating agents, and time of 
assay, and (see details on Supporting Information file SI00.doc). 2

Nanoparticles Dataset (ABNP-set). We used a previously reported dataset with the outcomes of Nn = 300 pre-
clinical assays of metal, metal salt, and metal oxide ABNPs against different bacteria species (s).2 The metal 
ABNP have a core made of: gold (Au), silver (Ag), or copper (Cu). The metal salt ABNP cores are made of 
cadmium(II) sulfide (CdS) or copper(I) iodide. The metal oxide ABNP include: cadmium(II) oxide (CdO), zinc 
oxide (ZnO), copper(II) oxide (CuO), lanthanum(III) oxide (La2O3), aluminium oxide (Al2O3), iron(III) oxide 
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(Fe2O3), tin(IV) oxide (SnO2), titanium(IV) oxide (TiO2), iron(II, III) oxide (Fe3O4), and silicon dioxide (SiO2). 
These assays of these 15 nanomaterials involved multiple experimental conditions cnj. We listed all the specific 
conditions of one assay as a vector cnj = [cnj, cnj, cnj ….. cnmax].  These conditions of assay include the measurement 
of 1 out of 4 possible antibacterial activity parameters, against 1 out of 34 possible bacteria species (different 
strains included). Other labels or experimental conditions considered are selecting at least 1 out of 3 ABNPs 
shape and running the experiment in 1 out of 4 possible intervals time during. The original data was downloaded 
from OCHEM database (https://ochem.eu/home/show.do)3 and other sources.4-15 The dataset also included 
information about physicochemical parameters of the ABNP and the coating agents used (see next sections). 2

Bacterial MRNs dataset (MRN-set). The data were downloaded directly from Barabasi’s group website 
(http://www.nd.edu/~networks/resources.htm) as gzipped ASCII files. In these files each number represents a 
substrate in the metabolic network. Data-format is: From → To (directed link). The information studied was 
previously obtained by Jeong et al. from the ‘intermediate metabolism and bioenergetics’ portions of the WIT 
database and used in order to try to understand the large-scale organization of metabolic networks.16 According to 
the authors, the biochemical reactions described within the WIT database are composed of substrates and 
enzymes connected by directed links. For each reaction, educts and products were considered as nodes connected 
to the temporary educt-educt complexes and associated enzymes. Bidirectional reactions were considered 
separately. For a given organism with N substrates, E enzymes and R intermediate complexes the full 
stoichiometric interactions were compiled into an (N+E+R) X (N+E+R) matrix, generated separately for each of 
the different organisms. The names, abbreviations, and links for all the networks studied are: Actinobacillus 
actinomycetemcomitans = AB; Bacillus subtilis = BS; Clostridium acetobutylicum = CA; Campylobacter jejuni = 
CJ; Chlamydia pneumoniae = CQ; Chlamydia trachomatis = CT; Deinococcus radiodurans = DR; Escherichia 
coli = EC; Enterococcus faecalis = EF; Haemophilus influenza =HI; Helicobacter pylori = HP; Mycobacterium 
bovis = MB; Mycoplasma genitalium = MG; Mycobacterium leprae = ML; Mycoplasma pneumonia = MP; 
Mycobacterium tuberculosis = MT; Neisseria gonorrhoeae = NG; Neisseria meningitidis = NM; Pseudomonas 
aeruginosa =PA; Porphyromonas gingivalis = PG; Streptococcus pneumonia = PN; Rhodobacter capsulatus = 
RC; Saccharomyces cerevisiae = SC; Streptococcus pyogenes = ST; Salmonella typhi =TY; Yersinia pestis =YP.

Shannon’s transform of input variables. This IFPTML model considers that the system under study (S) is 
composed of various subsystems (S = Sd + Sn + Ss) with Sd = AD, Sn = NP, Ss = MRN. The structure of each 
subsystem is encoded with the vectors of molecular/structural descriptors Ddk, Dnk, and Dsk, respectively. The 
vectors of the subsystem Sd have the elements Ddk = [Dd1, Dd2, Dd3, Dd4]. These elements are the descriptors the ith 
AD. They are: Dd1 = Logarithm of the n-Octanol/Water Partition coefficients (LOGPi), Dd2 = Topological Polar 
Surface Area (PSAi), Dd3 = Number of Violations to Lipinski’s Rule (NVLRi), and Dd4 = Molecular Weight 
(Mwi). The vectors of the subsystem Sn have the elements: Dnk = [Dn1, Dn2, Dn3, Dn4, Dn5, Dn6, Dn7, Dn8]. They are 
the properties of the nth NP. The two first are: Dn1 = NP Molar Volume (AMV) and Dn2 = Average Atomic 
Electronegativity (AAE). The two other are: Dn3 = Average Atomic Polarizability (AAP) and Dn4 = Average 
Particle Size (APS) of the NP core in nanometers (nm). The vector Dnk has also as elements the descriptors of the 
first (ca1) and second (ca2) CAs of the nth NP: Dn5 = LOGPca1, Dn6 = PSAca1, Dn5 = LOGPca2 and Dn6 = PSAca2. 
Last, the vectors of the subsystem Ss have the elements: Dsk = [Ds1, Ds2, Ds3,]. They are the topological parameters 
of the structure of the sth MRNs: Ds1 = Ns MRNs Number of nodes (number of metabolites), Ds2 = Lins Average in-
degree (Average number of educts or substrates), Ds3 = Louts Average out-degree (Average number of adducts or 
products).  They have different units and scales making a necessity the re-scaling and/or standardization of all the 
information into the same scale towards the subsequent IF and ML processing. As one IF process is involved we 
selected the Shannon’s entropy information measure as the scaling transformation. All the AD, NP, and NP coat 
variables have been transformed in Sh(Dnk) values using the following equations.

https://ochem.eu/home/show.do
http://www.nd.edu/~networks/resources.htm
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p(Dk) = 1
(1+Exp (−Dk /1000)   (S1) 

 
 Sh(Dk) = −p(Dk) · log⁡(p(Dk)) (S2) 

Shannon-entropy scaling of NP structural information. 

The original NP-set contains different experimental/theoretical physicochemical parameter to characterize the 
NP structure/composition details. These parameters were the Average Molar Volume (AMV), the Average 
Atomic Electronegativity (AAE), and the Average Atomic Polarizability (AAP). These physicochemical 
properties were retrieved from the website Chemicool Periodic Table (http://www.chemicool.com/elements).17 
The fourth parameter was the Average Particle Size (APS) expressed in nanometers (nm). However, in order to 
carry out the IF process making a fusion of the NP and AD on the same working dataset we decided to express all 
the information in the same scale. Consequently, the information of 2 datasets was transformed into a Shannon’s 
entropy scale previously to fusion. The information about NP core and coating agents has been scaled using the 
same formulae to calculate the Shannon’s entropy values. After that, we obtained the values of entropy Shk(Dkn). 
With the Shk(Dkn) values we can calculate the PTOs of the NP assays used as input for the PTMLIF model. The 
PTOs calculated here has the form of multi-condition MAs by analogy to previous reports. The formula of these 
PTOs is the following ΔSh(Dkn) = Shkn - <Shkn>cn. In Table S1 we show selected examples of the average values 
<Shkn>cn for different subsets of NP assay conditions cn (Supporting Information file SI00.doc). The information 
about all the NPs, shape, type, and values of Shkn and <Shkn>cn appear in the Supporting Information file 
SI01.xlsx, see NP sheet.

Table S1. Shannon’s entropy information measures for NP (selected examples)

NP 
Type NP Shape Sh(MWn) Sh(AMVn) Sh(AAEn) Sh(AAPn) Sh(APSn)

Oxide ZnO Acicular 0.1476 0.1501 0.1504 0.1504 0.1497
ZnO N/A 0.1476 0.1501 0.1504 0.1504 0.1493
CuO N/A 0.1477 0.1502 0.1504 0.1504 0.1493

La2O3 N/A 0.1371 0.1499 0.1504 0.1501 0.1493
Al2O3 N/A 0.1468 0.1501 0.1504 0.1504 0.1493
Fe2O3 N/A 0.1445 0.1501 0.1504 0.1504 0.1493
SnO2 N/A 0.1449 0.15 0.1504 0.1504 0.1493
TiO2 N/A 0.1477 0.1501 0.1504 0.1503 0.1493
SiO2 N/A 0.1484 0.1501 0.1504 0.1504 0.1493
CdO Spherical 0.1458 0.1501 0.1504 0.1504 0.1498
Fe3O4 Spherical 0.1414 0.1501 0.1504 0.1504 0.1501

Metal CuI N/A 0.1432 0.15 0.1504 0.1503 0.1502
CdS Spherical 0.1452 0.15 0.1504 0.1503 0.1504
Au Spherical 0.143 0.1502 0.1504 0.1503 0.1505
Ag Spherical 0.1466 0.1502 0.1505 0.1503 0.1504

http://www.chemicool.com/elements
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Cu Spherical 0.1483 0.1503 0.1504 0.1503 0.1502
NP Org. Strain Shape Average Values

Type cn1 cn2 cn3 <Sh(AMVn)cnj> <Sh(AAEn) cnj > <Sh(AAPn) cnj > <Sh(APSn) cnj >

All EC K-12 Spherical 0.14647 0.15013 0.15044 0.15032
EC MDR 0.14296 0.15017 0.15043 0.15031

EC ATCC 
10536 0.1471 0.1502 0.1505 0.1503

EF VCM-R 0.1466 0.1502 0.1505 0.1503

SA ATCC 
9144 Acicular 0.14763 0.15012 0.15043 0.15039

EC ATCC 
10536 0.14763 0.15012 0.15043 0.15039

PA ATCC 
9027 0.14763 0.15012 0.15043 0.15039

     In Table S2 we show the individual values of Sh(Dcak) and the average values <Sh(Dack)cnj> for each 
descriptor Dack of the coating agents. These MAs quantify the variability on the first coating agent, the second 
coating agent (if any), and the time of assay, respectively. However, the values of variance of these MAs were too 
low to be included in ML analysis. Consequently, we decided to encode all this information into a modified type 
of PTOs based on multiple Shannon’s entropy information measures ΔSh(Dca1, Dca2, Ddk). The use of many 
different types of PTOs in PTMLIF analysis applied to Nanotechnology was discussed in the literature before.18-20 

Table S2. Shannon’s entropy information measures for NP coating agents

Coating systems Coating systems numerical information
Ncoat Poly. Coating Coating Agent 01 Coating Agent 02

System Sh(LOGPac1) Sh(PSAac1) Sh(LOGPac2) Sh(PSAac2)
Double Mono. PDT/Mel 0.14776 0.15050 0.14627 0.15054

PDT/ACh 0.14776 0.15050 0.14962 0.15055
PDT/CQ 0.14776 0.15050 0.14956 0.15037

PDT/DMB 0.14776 0.15050 0.14734 0.15049
PDT/CPB 0.14776 0.15050 0.14700 0.15045

PDT/G 0.14776 0.15050 0.14783 0.15051
Single PDT 0.14776 0.15050 0.15051 0.15051

Maltose 0.14328 0.15065 0.15051 0.15051
Lactose 0.14328 0.15065 0.15051 0.15051

Glutathione 0.14457 0.15058 0.15051 0.15051
Glucose 0.14652 0.15059 0.15051 0.15051
DMA 0.15051 0.15022 0.15051 0.15051

Galactose 0.14652 0.15059 0.15051 0.15051
Poly. PVP 0.14983 0.15052 0.15051 0.15051

PGA 0.14690 0.15055 0.15051 0.15051
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None None None 0.15051 0.15051 0.15051 0.15051
Nc Poly. Coating Coating Agent 01 Coating Agent 02
cc1 cc2 Type <Sh(LOGPac1)cnj> <Sh(PSAac1) cnj > <Sh(LOGPac2) cnj > <Sh(PSAac2) cnj >

Double Mono I 0.148 0.150 0.148 0.150
Single Mono. II 0.146 0.151 0.151 0.151
Single Poly. III 0.148 0.151 0.151 0.151
None None IV 0.151 0.151 0.151 0.151

Shannon’s entropy scaling of MRN local structural information. 

As we mentioned before the same kind of operators Shk(Dk) can be used for different subsystems. Firstly, we 
calculated the parameters Nms number of metabolites (m), or Dks = <Lins> average in-degree, Dks = <Louts> 
average out-degree for all metabolites in the MRN of the sth organism. The calculation of these parameters was 
carried out with the software MI-NODES21 developed by our group and verified with the software CentBin.22 
Next, by using Equation 1 we also applied the same probability operator p(Dk) to the structural descriptors of the 
and MRNs (Dks). After that we obtained the values of respective entropy Sh(Dks) descriptors Sh(Nms), Sh(Lins) and 
Sh(Louts) of MRN of the sth organism by using Equation 2. It is important to note that Nms, Lins, and Louts are local 
node centralities of the MRNs.16 Consequently, the entropies obtained Sh(Nms), Sh(Lins), and Sh(Louts) are also 
local descriptors.21 In Table 3, you can see also the names of the organisms, two-letter codes, and their respective 
values of Sh(Nms), Sh(Lins), and Sh(Louts) for all the MRNs studied. These values have been calculated in this 
work by the first time for this set of MRNs.

Table 3. Shannon entropy information measures of MRNs studied in this work.

 MRN Org. MRNs Shannon Entropy Information Measures
Ns Code Sh3(Nm) Sh4(Lin) Sh5(Lout) Sh(π1) Sh2(π2)
1 AB 0.134 0.088 0.090 0.015 0.014
2 BS 0.112 0.024 0.026 0.016 0.014
3 CA 0.128 0.065 0.068 0.007 0.009
4 CJ 0.134 0.091 0.093 0.01 0.012
5 CQ 0.143 0.133 0.134 0.038 0.038
6 CT 0.142 0.129 0.130 0.017 0.018
7 DR 0.110 0.023 0.024 0.008 0.007
8 EC 0.112 0.022 0.023 0.008 0.008
9 EF 0.134 0.085 0.087 0.008 0.011
10 HI 0.127 0.058 0.059 0.016 0.013
11 HP 0.135 0.089 0.091 0.015 0.017
12 MB 0.132 0.085 0.087 0.008 0.009
13 MG 0.142 0.126 0.127 0.016 0.017
14 ML 0.132 0.084 0.085 0.008 0.009
15 MP 0.144 0.130 0.130 0.019 0.02
16 MT 0.123 0.054 0.056 0.015 0.014
17 NG 0.133 0.082 0.084 0.008 0.011
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18 NM 0.134 0.087 0.089 0.009 0.012
19 PA 0.115 0.033 0.035 0.019 0.016
20 PG 0.132 0.088 0.090 0.008 0.011
21 PN 0.133 0.081 0.082 0.008 0.011
22 RC 0.119 0.042 0.044 0.017 0.015
23 SC 0.125 0.051 0.053 0.01 0.011
24 ST 0.133 0.082 0.084 0.01 0.011
25 TY 0.110 0.020 0.021 0.007 0.007
26 YP 0.124 0.059 0.061 0.01 0.013

Markov-Shannon entropy scaling of MRN high-order structural information. 

In any case, Nms, Lins, and Louts are local topological descriptors that only account for information of the node 
(metabolite in question) and the nodes directly linked to it direct precursors (educts) for the case of <Lins> and 
direct products (adducts) for the case of Lout.16 Consequently, we also used Shannon operators of the type Sh(Dk) 
= -p(Dk)·logp(Dk) to quantify higher order structural information of the MRNs. However, in this particular case, 
the operator is not applied to the local descriptor per se. In this case we apply the operator to the probabilities 
obtained from a Markov Chain calculation.  In so doing, we calculated the values of entropy Shk of kth order for 
the sth species. The Shk values measure the connectivity information in the MRN of the sth species for all 
metabolites and their neighbors (substrates or products) placed at a distance (number of reactions) ≤ k.  In order to 
calculate these indices we applied the Shk(Dk) = -p(Dk)·logp(Dk) operator directly to the absolute probabilities Dk 
= pk(m,s). These values are the absolute probabilities pk(m,s) with which the mth metabolite transforms into 
another metabolite (catabolism) and/or is the product (anabolism) of the different metabolic reactions in the 
MRNs of the sth organism. The Markov matrix 1Πs was used to calculate pk(m,s) values by means of a Matrix-
vector multiplication operation Mk·v involving the kth natural powers Mk of the original matrix M. In the case of 
a Markov matrix this product is (1Πs)k·π0 a component of Chapman-Kolgomorov equation. We calculated only 
the two first powers (1Πs)1 and (1Πs)2of the Markov matrix 1Πs of each one of the sth bacteria species. After that 
we made the products π1s = (1Πs)1·π0 and π2s = (1Πs)2·π0. The resulting vectors π1s and π2s containing as elements 
the absolute probabilities p1(m,s) and p2(m,s) for each metabolite of the network. The values p1(m,s) are the 
absolute probabilities with which the mth metabolite comes directly from and/or transforms directly into another 
metabolite (k = 1). The values p2(m,s) are the absolute probabilities with which the mth metabolite comes directly 
from and/or transforms directly into intermediate metabolites that in turn came from and/or transform into a 
second product (k = 2). Finally, Shk(π1) and Shk(π2) values are calculated with the operators Shk(Dk) = -
p(Dk)·logp(Dk) = Shk(Dk) = -p(pk(m,s))·logp(pk(m,s)) as the sum of these values of entropy for each mth node 
(metabolite) in the MRNs, see Equation 3. In Table 3, you can see also the names of the organisms, two-letter 
codes, and values of Shk(π1) and Shk(π2) for all the MRNs studied. These values have been calculated in this work 
by the first time for this set of MRNs. The specific formula used to calculate these values of Sh(π1) and Shk(π2)  
of MRNs is the following, please see details on the literature:48

𝑆ℎ(𝛑𝑘 ) = − � 𝑝𝑘 (𝑚, 𝑠) · log 𝑝𝑘 (𝑚, 𝑠)         (S3)
𝑚=𝑚𝑚𝑎𝑥

𝑚=1

 

IF step for observed biological parameters. The first step to obtain the IFPTML model for DADNP systems 
was to defining and obtaining the values of the objective function. The objective function is the function we want 
to fit with a ML model using as input the vectors of descriptors for each case Dk. The objective function is 
obtained very often after a mathematical transformation of the original theoretical or observed property of the 
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system under study. 23-25 In the present IFPTML model we have two sets observed values (vij  and vnj) and two 
sets of input vectors (Ddk and Dnk) for the AD and NP subsystems (Sd and Sn) respectively. In addition, we found 
many different biological parameters cd0 and cn0. For instance, we find properties like Minimal Inhibitory 
Concentration (MIC (μg·mL-1)) or Minimal Bactericide Concentration (MBC (μg·mL-1)), etc. Do not help to 
solve the problem the fact that the vij and vnj values compiled are not exact numbers in many cases. Many reports 
in both dataset are of the type MIC (μg·mL-1) < 100. In addition, we have to consider that in order to obtain 
optimal DADNP systems we want to maximize some properties and minimize other. We conceptualize this fact 
with the parameter desirability. In Table 1 we depict the values of desirability, cutoff, and other parameters used 
for the different biological properties.

Table 1. Selected examples of reference function, cutoff, and other values for DADNP subsystems

cn0 = NP Activity (Units)a d Cutoff nj n(f(vnj)=1/cn0) fref

IC50(µM) -1 89.98 164 96 0.59
MIC(µM) -1 125.15 123 55 0.45
MBC(µM) -1 173.03 9 1 0.11
MBE 1 0.96 4 2 0.5
cd0 = AD Activity (Units) d Cutoff nj n(f(vij)=1/cd0) fref

IC50 nM 1 100.0 1590 1554 0.98
MIC nM -1 2500.0 11099 2859 0.26
MIC ug.mL-1 -1 50.0 92583 67059 0.72
MBC ug ml-1 -1 117.2 1349 1004 0.74
MBC uM -1 187.3 332 209 0.63

a IC50(µM) = Concentration that is required for 50% inhibition of the growth of the bacteria. MIC(µM) = Minimum inhibitory 
concentration, i.e., the minimum concentration required to prevent the visible growth of the bacteria. MBC(µM) = Minimum bactericidal 

concentration, i.e., the minimum concentration required to complete kill the bacteria. 

The parameter desirability was set d = 1 or d = 1 when we want to maximize the value vij or vnj respectively. 
Remember, the different AD and NP parameter has names or labels cd0 and cn0, respectively. Examples of 
biological activity parameters with d = 1 are the Selectivity ratio, Inhibition(%), etc. Conversely, negative 
desirability d = -1 parameters are for instance MIC(μg·mL-1), IC50(μg·mL-1), etc. These facts increase the 
uncertainty of the data and difficult the development of regression model. To say all, it is a common practice in 
drug discovery to use a cutoff value to split AD or even NP assays as promising or not. Consequently, in order to 
obtaining our final objective function we need to pre-process all observed vij  and vnj values to eliminate or 
minimize all inaccuracies. In addition, we need to re-scale vij and vnj values to obtaining a dimensionless variable 
not affected by scales. Last, IF processing step for both parameters vij and vnj allows to obtaining an objective 
function of the putative DADNP system. In the Figure 2 we depict a workflow summarizing all the steps of 
information flow (variable scaling, fusion, processing, etc.) of the IFPTML algorithm used here. 

Firstly, we re-scaled the original parameters vij and vnj to obtain the corresponding Boolean (dummy) functions 
f(vij)obs and f(vnj)obs. The scaling of vij was as follow:  f(vij)obs = 1 when vij  > cutoff and d = 1 or vij  < cutoff and 
desirability d = -1, f(vij) = 0 otherwise. By analogy, vnj scaling was:  f(vnj)obs = 1 when vnj  > cutoff and d = 1 or vnj 
< cutoff and d = -1, f(vij, vnj) = 0 otherwise. The values f(vij)obs = 1 and  f(vnj)obs = 1  points to an strong desired 
effect of both the AD and the NP over the target bacteria.10 Accordingly, the objective function was defined as 
follow f(vij, vnj)obs = f(vij)obs· f(vnj)obs. Then as result of the IF-scaling f(vij, vnj)obs depends on the ith AD 
compound, the nth NP system, the cth CA used as coat, the sth specie of assay, and the jth sets of assay conditions. 
Otherwise, f(vij, vnj)obs = 0, meaning that at least one of the previous conditions fail.
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IF step for function of reference. Once we defined the objective function we must to define the input variables 
of the IFPTML model. The first and unique of his kind input variable of this model is the function of reference 
f(vij, vnj)ref. In IFPTML models f(vij, vnj)ref place an special role because this function represent the expected 
probability f(vij, vnj)ref = p(f(vij, vnj)ref = 1) of obtaining the desired level of activity for a property obtained from 
already known systems. The model starts with the value this function for an already known system or sub-set of 
systems used as reference. Later the IFPTML model adds the effect of deviations (perturbations) of the query 
system from the systems of reference (PT ideas, see next section). Consequently, f(vij, vnj)ref is also a function 
based on observed (not predicted) outcomes. In this work the reference function for putative DADNP systems 
was obtained by IF-scaling of the original vij and vnj values as well. In the previous section we explained how to 
transform these values into the f(vij)obs and f(vnj)obs functions. Once we get the values of these functions for all 
cases on the AD and NP datasets we are in position of counting the number of positive outcomes n(f(vij) = 1) and 
n(f(vnj) = 1). Next we can divide these values by the total number of cases obtaining the functions of reference 
(expected probabilities) for the AD and NP systems alone. These values are f(vij)ref = p(f(vij)ref = 1) = n(f(vij)ref = 
1)/nj and f(vnj)ref = p(f(vnj)ref = 1) = n(f(vnj)ref = 1)/nj. From this, the calculation of the function of reference is 
straightforward to realize as the product of the probabilities for each subsystem f(vij, vnj)ref = p(f(vij, vnj)ref = 1) = 
p(f(vij)ref = 1)·p(f(vnj)ref = 1). The function of reference used here is then another expression of the IF step (union) 
of both AD and NP datasets. 

𝑓(𝑣𝑖𝑗, 𝑣𝑛𝑗, 𝑣𝑠𝑗)𝑟𝑒𝑓 =  𝑓(𝑣𝑖𝑗)𝑟𝑒𝑓·𝑓(𝑣𝑛𝑗)𝑟𝑒𝑓·𝑓(𝑣𝑠𝑗)𝑟𝑒𝑓    (𝑆4)

Table 2. Data pre-processing functions and cases distribution

Function Value Details

1
Plausible positive outcome in jth assay vs. 

sth species with MRNs for putative DADNPin 
formed by ith AD and nth NP f(vij, vnj, vsj)obs

0
Plausible negative outcome in jth assay vs. 

sth species with MRNs for putative DADNPin 
formed by ith AD and nth NP 

f(vij, vnj, vsj)ref 0-1

Probability with which the systems of the same class of 
the system of reference have a positive outcome in jth 

assay vs. sth species with MRNs for putative DADNPin 
formed by ith AD and nth NP 

1 Positive outcome for ith AD in jth assayf(vij)obs 0 Negative outcome for ith AD in jth assay 
1 Positive outcome for nth NP in jth assay 

f(vnj)obs 0 Negative outcome for nth NP in jth assay
1 sth MRN belongs to a Human pathogen specie f(vsj)obs 0 sth MRN does not belongs to a Human pathogen specie

f(vjns)obs 1 jth AD and NP nth specie = MRN sth specie
f(vjns)obs 0 jth AD and NP nth specie ≠ MRN sth specie

1 Cases used to train the model (set = t)
f(set)obs 0 Cases used to validate the model (set = v)
Total - All cases in data set
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PT data preprocessing. In addition to Ddk and Dnk vectors this IFPTML analysis also considers the vectors cdj 
and cnj having as components the non-numerical experimental conditions and/or labels for AD and NP assays. 
Using the Sh(Ddk) and Sh(Dnk) values explained before we can calculate the PTOs of the AD and NP assays in 
order to account for this additional information. We used here two kinds of PTOs. The first is the AD and NP MA 
PTOs (Equation S3 and Equation S4). They are used to account for AD and NP structural and assay 
information. The PTOs ΔSh(Ddk) and ΔSh(Dnk) codify AD and NP structural and/or physichochemical 
information on the parameters Sh(Ddk) and ΔSh(Dnk), respectively. The PTOs ΔSh(Ddk) and ΔSh(Dnk) codify AD 
and NP biological assay information with the parameter <Sh(Ddk)cdj> and <Sh(Dnk)cnj>, respectively. They are the 
values of the are average operator < > for Sh(Ddk) and ΔSh(Dnk) running over all cases with the same sub-set of 
experimental conditions cdj and cnj, respectively. Consequently, they should give specific values for each assay 
with at least one different element (experimental condition) of the vector cdj or cnj.  In consequence, they can be 
used to indicate which assay we are using.18, 20, 26-28 Please, see values of <Sh(Ddk)cdj> and <Sh(Dnk)cnj> values in 
Table S1 of Supporting Information file SI00.doc. The second type of PTOs used is the AD-NP coat MA Balance 
(MAB) PTO ΔΔSh(Dca1, Dca2, Ddk) (Equation S5). The MAB PTO accounts for the similarities on the 
information of AD vs. the NP coating agent. PTOs based directly on MA and/or linear and non-linear 
transformations of MA have been used for AD and NP discovery before.18-20 However, the MAB is reported here 
for the first time (see Results and Discussion). The MAS is another expression of the combined IF+PT additive 
processing of both AD and NP datasets.
Δ𝑆ℎ(𝐷𝑑𝑘) = Δ𝑆ℎ(𝐷𝑑𝑘) ‒ 〈𝑆ℎ(𝐷𝑑𝑘)𝑐𝑑𝑗〉        (𝑆3)

Δ𝑆ℎ(𝐷𝑛𝑘) = Δ𝑆ℎ(𝐷𝑛𝑘) ‒ 〈𝑆ℎ(𝐷𝑛𝑘)𝑐𝑛𝑗〉        (𝑆4)

ΔΔ𝑆ℎ(𝐷𝑛𝑘) = Δ𝑆ℎ(𝐷𝑑𝑘) ‒ [Δ𝑆ℎ(𝐷𝑐𝑎1) + Δ𝑆ℎ(𝐷𝑐𝑎2)]        (𝑆5)

IF step and design of training and validation subsets

All the cases of a dataset should assigned to training (set = t) or validation (set = v) series. The procedure of 
cases sampling used should be random, representative, and stratified.29 As an additional condition our sampling 
should take into consideration the IF-scaling process. Firstly, we downloaded the AD activity dataset from 
ChEMBL which has random uploads from many sources worldwide and from randomly selected journal papers 
dealing with NP antibacterial activity. Next, we organized all the cases based on the following labels cd0, cd1, cd2, 
cn0, cn1, and cn2. All cases were ordered by sorting the labels from A to Z (remember these are non-numeric 
variables in nature). The order of priority of the labels on the process of ordering was cd0 => cn0 => cd1 => cn1 => 
cd2 => cn2. It means that firstly we ordered the cases by cd0, next by cn0, and so on. This priority order takes into 
account the IF process by alternating labels from both AD and NP datasets. After that 3 out of each 4 cases were 
assigned to set = t and 1 out of 4 set = v from top to down of the list. This increases the probability that almost all 
the levels of each label are represented in set = t and set = v (stratified sampling). This also increases the 
probability that almost all levels of each label are in a proportion 3/4 in set = t and 1/3 in set = v (representative 
sampling). The 75% vs. 25% proportion between set = t and set = v is not the only but is very commonly used. 29

 IFPTML-ANN model variable sensitivity analysis
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 All this confirms the strength of the linear hypothesis used here. However, the values of Sn and Sp obtained have 
still a margin from improvement. Consequently, we increased the number of variables in the PTML-LNN models 
from 9 to 10 and 11. In this study, no significant change was detected. As a result, we also considered the non-
linear hypothesis here as a way to increase Sp and Sn values. In fact, the IFPTML-MLP 9:9-8-1:1 model with 9 
neurons in input layer (input variables) and 8 neurons in the hided layer showed more balanced SN and Sp ≈ 88% 
values. See summary of results in Table 7. See detailed results for all cases in Supporting Information file 
SI01.xlsx. More complicated IFPTML-MLP2 models with two hidden layers do not show significant 
improvement. 
 Taking all the previous factors into consideration we were pivoting between IFPTML-LDA or IFPTML-LNN 
model and IFPTML-MLP model. One important point in favor of the IFPTML-MLP model is his notably higher 
value of AUROC = 0.94 and the notably better behavior (shape) of the ROC curve with respect to the IFPTML-
LNN linear models and RND classifier behavior, see Figure 3. Once again Occam’s razor comes to rescue herein 
by checking if minimal necessary features (no more no less) are being considered.30 We carried out a feature 
sensitivity analysis on the input variables. In Figure 4 we can see that the IFPMTL-LNN models include or 
important parameters EGS point of view. Almost all parameters have a significant contribution with Sensitivity ≥ 
1.29 However, in most cases it is only marginally higher with Sensitivity ≈ 1.00 – 1.08. On the other hand, the 
IFPTML-MLP model also includes the important parameters according to EGS criteria but they have notably 
higher values of Sensitivity ≈ 1.00 – 2.52. MLP2 has even higher values of feature Sensitivity ≈ 1.00 – 3.31 but 
as we mentioned before there is no gain on Sp and Sn values to justify the notably higher complexity of the 
model, see Figure 4.

IFPTML
Variables t v t v t v t v t v

f(cd0,cn0)ref 1.0 1.0 1.1 1.1 1.2 1.2 1.0 1.0 1.0 1.0
Sh(ALOGPi)cj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sh(Lins)cs 4.8 4.7 5.1 5.0 5.6 5.5 1.0 1.0 6.5 6.4
Sh(Louts)cs 3.9 3.8 5.3 5.2 6.1 6.0 1.0 1.0 6.2 6.1
Sh(AMVn)cn 3.1 3.0 5.5 5.4 5.6 5.5 1.0 1.0 1.0 1.0
Sh(APSn)cn 3.8 3.8 2.7 2.6 3.7 3.6 1.1 1.1 1.1 1.1
Sh(t)cn 1.3 1.3 1.3 1.3 1.3 1.3 1.0 1.0 1.0 1.0

Sh(PSAi,PSACA1,PSACA2)cj,cn 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MLPI MLPII MLPIII RBF LNN

Figure S1. IFPTML-ANN models sensitivity analysis
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