Supporting information

Highly efficient photocatalytic degradation of emerging pollutant ciprofloxacin via a rational design of magnetic interfacial junction of mangosteen peel wastederived 3D graphene hybrid material

Gongchang Zeng^[a], Hanyun Zhang^[b], Shujie Liang^[a], Xiaohui Zhong^[a], Mengyuan Zhang^[a], Zuqi Zhong^[a], Hong Deng^{[a]*}, Heping Zeng^{[d]*}, Zhang Lin^[a, c]

[a] School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, P.R. China

[b] Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, United Kingdom

[c] School of Metallurgy and Environment, Central South University, Changsha,410083, P.R. China

[d] School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China

*Corresponding author. E-mail: dengh2016@scut.edu.cn (H.Deng); zenghp@scnu.edu.cn (HP.Zeng)

<u>1. Preparation of 3D graphene/Cd_{0.5}Zn_{0.5}S hybrids</u>

 $Cd_{0.5}Zn_{0.5}S(0.1 \text{ g})$ was dissolved in deoxygenated DI water (20mL) to form a clear solution. Then, an aqueous solution (10mL) with the targeted amount of 3D graphene was transferred to the $Cd_{0.5}Zn_{0.5}S$ solution and stirred for 3 h under N₂ gas protection. By altering the amount of added 3D graphene, a series of 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids with 1, 3, 5, and 7 wt% 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ were achieved. The mixture was then subjected to hydrothermal conditions at 180°C for 24 h in a 50 ml Teflon-lined stainless-steel autoclave. After the reaction, the samples were rinsed with DI water and separated by repeated centrifugation. After drying overnight (80°C) in an oven, the final products were collected for further characterization and experiments.

2. Supporting figures

Fig. S1. AFM image of 3D graphene.

Fig. S2. XPS survey spectra of 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids.

Fig. S3. Cyclic tests of 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids.

Fig. S4. FTIR image of 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids before and after photocatalytic experiments.

Fig. S5. XRD image of 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids after the photocatalytic reaction.

Fig. S6. TEM image of 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids after photocatalytic tests.

Fig. S7. Energy gap for bare $Cd_{0.5}Zn_{0.5}S$.

Fig. S8. Energy gap for 5%wt 3D graphene/ $Cd_{0.5}Zn_{0.5}S$ hybrids.

Fig. S9. Photocatalytic degradation system (left photo) and schematic diagram of the photocatalytic experiment with the magnetic field (right photo).

Relative pressure (p/p₀)

Fig. S10. BET results of inactivated mangosteen peel waste (MPW) carbon and activated MPW 3D graphene.

Table S1 Atomic ratio	of $Cd_{0.5}Zn_{0.5}S$	and 3D grap	hene/Cd _{0.5} Zn _{0.5} S	hybrids.
-----------------------	------------------------	-------------	--	----------

Sample	Zn: Cd ^a (atomic ratio)			
Cd _{0.5} Zn _{0.5} S	0.46:0.48			
5%wt 3D graphene/Cd _{0.5} Zn _{0.5} S	0.50:0.49			

^a Measured by AAS

Table S2 Wt% content of Cd_{0.5}Zn_{0.5}S and 3D graphene/Cd_{0.5}Zn_{0.5}S hybrids.

Sample	Cd ^a	Zn ^a	Sb	Cb
$Cd_{0.5}Zn_{0.5}S$	28.95	29.18	35.7	-

5%wt 3D graphene/Cd_{0.5}Zn_{0.5}S 21.83 21.63 43.8 4.72

^a Measured by AAS. ^b Measured by elemental analysis