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1. Phenolic compounds in environmental samples 
 

Table S1. Phenolic compounds included in the European Community Directive 76/464/EEC 
and the US-EPA list of priority pollutants. 
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2. DFT calculations for charge-transfer complexes of phenolic 
compounds 

 
Table S2. Calculated properties of the CTCs with phenols (at PBE0/6-31+G(d,p)-SMD level). 
Solvent effects are included. 

Charge-transfer complex EHOMO, Eh EHOMO, eV 
ELUMO, 
Eh 

ELUMO, eV 
ΔLU-HO,a 
eV 

Ebind, 
kcal/mol 

DCTb RD–A,c Å 

Charge-transfer complexes of phenol 
Phenol – DDQ –0.253 –6.88 –0.170 –4.67 2.21 4.7 0.114 3.455 
Phenol – TCNQ –0.244 –6.64 –0.165 –4.49 2.15 3.9 0.007 4.197 
Phenol – TNF –0.245 –6.67 –0.151 –4.11 2.56 41.1 0.003 4.207 

Charge-transfer complexes of chlorophenols 
o-Chlorophenol – DDQ –0.257 –6.99 –0.173 –4.71 2.28 3.0 0.073 3.623 
o-Chlorophenol – TCNQ –0.249 –6.78 –0.165 –4.49 2.29 2.2 0.007 4.216 
o-Chlorophenol – TNF –0.250 –6.80 –0.151 –4.11 2.69 41.6 0.003 4.250 
p-Chlorophenol – DDQ –0.250 –6.80 –0.172 –4.68 2.12 2.6 0.097 3.498 
p-Chlorophenol – TCNQ –0.244 –6.64 –0.166 –4.52 1.12 2.0 0.006 4.210 
p-Chlorophenol – TNF –0.246 –6.69 –0.150 –4.08 2.61 39.7 0.012 3.397 

Charge-transfer complexes of cresols 
m-cresol – DDQ (1) –0.251 –6.83 –0.168 –4.57 2.26 3.5 0.135 3.250 
m-cresol – DDQ (2) –0.251 –6.83 –0.167 –4.54 2.29 4.0 0.125 3.377 
m-cresol – TCNQ –0.241 –6.56 –0.165 –4.49 2.07 2.1 0.008 4.176 
m-cresol – TNF –0.242 –6.59 –0.150 –4.08 2.51 41.7 0.001 4.369 
o-cresol – DDQ (1) –0.250 –6.80 –0.167 –4.54 2.26 5.9 0.157 3.249 
o-cresol – DDQ (2) –0.250 –6.80 –0.168 –4.57 2.23 3.4 0.145 3.408 
o-cresol – TCNQ –0.239 –6.50 –0.165 –4.49 2.01 2.0 0.007 4.161 
o-cresol – TNF –0.240 –6.53 –0.150 –4.08 2.45 41.2 0.003 4.056 

Charge-transfer complexes of xylenols 
2,5-xylenol – DDQ (1) –0.247 –6.72 –0.166 –4.52 2.20 3.8 0.179 3.233 
2,5-xylenol – DDQ (2) –0.248 –6.75 –0.164 –4.46 2.29 4.9 0.208 3.276 
2,5-xylenol – TCNQ –0.235 –6.40 –0.165 –4.49 1.91 2.1 0.006 4.203 
2,5-xylenol – TNF –0.234 –6.37 –0.151 –4.11 2.26 41.7 0.001 4.200 
2,6-xylenol – DDQ –0.247 –6.72 –0.166 –4.52 2.20 4.5 0.180 3.287 
2,6-xylenol – TCNQ –0.235 –6.40 –0.165 –4.49 1.91 2.3 0.006 4.508 
2,6-xylenol – TNF –0.236 –6.42 –0.150 –4.08 2.44 41.8 0.002 4.150 

Individual phenolic compounds 
PhOH –0.239 –6.50 –0.010 –0.27 6.23 N/A N/A N/A 

ClPhOH –0.239 –6.50 –0.020 –0.54 5.96 N/A N/A N/A 
m-cresol –0.236 –6.42 –0.009 –0.24 6.18 N/A N/A N/A 
o-cresol –0.234 –6.37 –0.005 –0.14 6.23 N/A N/A N/A 
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Charge-transfer complex EHOMO, Eh EHOMO, eV 
ELUMO, 
Eh 

ELUMO, eV 
ΔLU-HO,a 
eV 

Ebind, 
kcal/mol 

DCTb RD–A,c Å 

2,5-xylenol –0.229 –6.23 –0.005 –0.14 6.09 N/A N/A N/A 
2,6-xylenol –0.230 –6.26 0.000 0.00 6.26 N/A N/A N/A 

DDQ –0.310 –8.44 –0.179 –4.87 3.57 N/A N/A N/A 
TCNQ –0.271 –7.37 –0.167 –4.54 2.83 N/A N/A N/A 
TNF –0.310 –8.44 –0.154 –4.19 4.25 N/A N/A N/A 

a ΔLU-HO, energy difference between LUMO and HOMO; 
b DCT, degree of charge transfer; 
c RD–A, intermolecular distance between the donor (D) and the acceptor (A); 
Ebind, binding energy between D and A [–Ebind = ED-A – ED – EA]. 
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Figure S1. Calculated properties of the CTCs with phenols (at PBE0/6-31+G(d,p) level, solvent 
effects are included): energy difference between LUMO and HOMO (ΔLU–HO), binding energy 
between the donor (D) and acceptor (A) (Ebind), distance between the donor and acceptor, 
and degree of charge transfer (CT). Values refer to the lowest-energy geometry of each 
complex: (1) or (2), from Table S2. 
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2.1. Optimized geometry and MO of CTCs with phenol 
 

 
 

Figure S2. Conformations of phenol–DDQ (a), phenol–TCNQ (b), and phenol–TNF (c) charge-
transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level. 
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Figure S3. MO energy-level diagrams of CT complexes of phenol solvated in chloroform at 
PBE0/6-31+G(d,p) level. 
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2.2. Optimized geometry and MO of CTCs with chlorophenols 
 

 
 
Figure S4. Conformations of o-chlorophenol–DDQ (a), o-chlorophenol–TCNQ (b), and o-
chlorophenol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) 
level. 
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Figure S5. MO energy-level diagrams of CT complexes of o-chlorophenol solvated in 
chloroform at PBE0/6-31+G(d,p) level. 
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Figure S6. Conformations of p-chlorophenol–DDQ (a), p-chlorophenol–TCNQ (b), and p-
chlorophenol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) 
level. 
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Figure S7. MO energy-level diagrams of CT complexes of p-chlorophenol solvated in 
chloroform at PBE0/6-31+G(d,p) level. 
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2.3. Optimized geometry and MO of CTCs with cresols 
 

 
 
Figure S8. Conformations of m-cresol–DDQ (a), m-cresol–TCNQ (b), and m-cresol–TNF (c) 
charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level. 
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Figure S9. MO energy-level diagrams of CT complexes of m-cresol solvated in chloroform at 
PBE0/6-31+G(d,p) level. 
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Figure S10. Conformations of o-cresol–DDQ (a), o-cresol–TCNQ (b), and o-cresol–TNF (c) 
charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level. 
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Figure S11. MO energy-level diagrams of CT complexes of o-cresol solvated in chloroform at 
PBE0/6-31+G(d,p) level. 
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2.4. Optimized geometry and MO of CTCs with xylenols 
 

 
Figure S12. Conformations of 2,5-xylenol–DDQ (a), 2,5-xylenol –TCNQ (b), and 2,5-xylenol –
TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level. 
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Figure S13. MO energy-level diagrams of CT complexes of 2,5-xylenol solvated in chloroform 
at PBE0/6-31+G(d,p) level. 
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Figure S14. Conformations of 2,6-xylenol–DDQ (a), 2,6-xylenol –TCNQ (b), and 2,6-xylenol –
TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level. 
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Figure S15. MO energy-level diagrams of CT complexes of 2,6-xylenol solvated in chloroform 
at PBE0/6-31+G(d,p) level. 
 
3. Optical properties of charge-transfer complexes of phenolic 

compounds 

 
Figure S16. UV-vis spectra of mixtures of 40 μmol phenol with DDQ in various proportions in 
1.8 mL CHCl3. (Calculated stoichiometry 1:1, calculated stability constant K = 74 M–1). 
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Figure S17. UV-vis spectra of mixtures of 40 μmol m-cresol with DDQ in various proportions 
in 1.8 mL CHCl3. (Calculated stoichiometry 1:1, calculated stability constant K = 107 M–1). 

 
Figure S18. UV-vis spectra of mixtures of 20 μmol o-cresol with DDQ in various proportions in 
1.5 mL CHCl3. (Calculated stoichiometry 1:1). 
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Figure S19. UV-vis spectra of mixtures of 20 μmol 2,5-xylenol with DDQ in various proportions 
in 1.8 mL CHCl3. (Calculated stoichiometry 1:1, calculated stability constant K = 40 M–1). 
Photograph demonstrates colors of 2,5-xylenol (a), DDQ (b), and mixed 2,5-xylenol and DDQ 
(c) solutions in chloroform. 
 
 
 

 
Figure S20. UV-vis spectra of mixtures of 20 μmol p-chlorophenol with DDQ in various 
proportions in 1.2 mL CHCl3. (Calculated stoichiometry 1:1, calculated stability constant 
K = 102 M–1). Photograph demonstrates colors of p-chlorophenol (a), DDQ (b), and mixed 
2,5-xylenol and DDQ (c) solutions in chloroform. 
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Table S3. Optical properties (λCT and εmax), stability constants (K), and stoichiometry 
(determined as tgα in a Bent-French plot of lg(Abs) vs. lg(cacceptor)) of the CTCs with phenolic 
compounds and DDQ in chloroform. 
 

Phenolic 
compound 

λCT, nm εmax, cm M–1 K, M–1 tgα 

Phenol 562 63.4 74 1.07 ± 0.09 
o-Chlorophenol 565 – –* – 
p-Chlorophenol 588 40.7 102 1.21 ± 0.08 

o-Cresol 605 94.4 – 1.13 ± 0.09 
m-Cresol 588 104.9 107 1.4 ± 0.1 

2,5-Xylenol 637 117.2 40 1.18 ± 0.08 
2,6-Xylenol 666 – – 1.2 ± 0.1 

* complex was unstable in solution at high concentrations required for UV-vis detection. 
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4. SERS sensor characterization 
 

 
Figure S21. Characteristic contact profilometer image for nanostructured silver layer on the 

glass substrate. 

 

 
Figure S22. SERS spectra of different concentrations of o-chlorophenol applied on the USR 
sensor modified with DDQ. 
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Figure S23. Dependence of the peak area of the CTC phenol:DDQ (5 mM) with a Raman shift 
of 1276 cm–1 on the concentration of phenol: (1) model solution; (2) extracted from an 
aqueous solution (P = 0.95; n = 10). 
 

 
Figure S24. Dependence of the peak area of the CTC 2,6-xylenol:DDQ (5 mM) with a Raman 
shift of 1276 cm–1 on the concentration of 2,6-xylenol: (1) model solution; (2) extracted from 
an aqueous solution (P = 0.95; n = 10). 
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Figure S25. Calibration curves for determination of: (a) phenol with TCNQ-modified SERS 
sensor by peak intensity at 1605 cm–1, (b) o-chlorophenol with DDQ-modified SERS sensor by 
peak intensity at 1465 cm–1 in the presence of 10 μM p-chlorophenol, (c) p-chlorophenol with 
TNF-modified SERS sensor by peak intensity at 1523 cm–1 in the presence of 10 μM 
o-chlorophenol, and (d) m-cresol with DDQ-modified SERS sensor by peak intensity at 
1598 cm–1 in the presence of 10 μM o-cresol (n = 5; P = 0.95) (Raman instrument settings: 
632.8 nm laser wavelength, 10% neutral density filter, 10 s acquisition time). 
 

 
 

Figure S26. SERS spectra acquired from real objects: 10 μL of 10-fold diluted with chloroform 
gasoline fuel on the TNF-modified SERS sensor (a and c, spectrum 1) and 10 μL of 10-fold 
diluted with phosphate buffer to pH 7 lake freshwater on the TNF-modified SERS sensor 
(b and c, spectrum 2). SERS spectra before (a, b) and after (c) baseline subtraction. (n = 5; 
P = 0.95); (Raman instrument settings: 10%, 632.8 nm, 10 s). 
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