Supplementary Information

Ultrasensitive and multiplex SERS determination of anthropogenic phenols in oil fuel and environmental samples

Olga E. Eremina,^{*a} Olesya O. Kapitanova, ^a Mariia V. Ferree, ^a Irina A. Lemesh, ^a Dmitry B. Eremin, ^b Eugene A. Goodilin^{a, c} and Irina A. Veselova ^a

^a Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia.

^b Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

^c Faculty of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia.

Table of Content

1.	Phenolic compounds in environmental samples	S2
2.	DFT calculations for charge-transfer complexes of phenolic compounds	S4
	2.1 Optimized geometry and MO of CTCs with phenol	S7
	2.2 Optimized geometry and MO of CTCs with chlorophenols	S9
	2.3 Optimized geometry and MO of CTCs with cresols	S13
	2.4 Optimized geometry and MO of CTCs with xylenols	S17
3.	Optical properties of charge-transfer complexes of phenolic compounds	S20
4.	SERS sensor characterization	S24

1. Phenolic compounds in environmental samples

Table S1. Phenolic compounds included in the European Community Directive 76/464/EEC and the US-EPA list of priority pollutants.

3-Methylphenol

2,4,6-Trichlorophenol

2,4-Dimethylphenol

2,3,4,5-Tetrachlorophenol

2,4-Dichlorophenol

2,3,5,6-Tetrachlorophenol

2-Nitrophenol

2,4-Dinitrophenol

 O_2N

NO₂

OH

2-Cyclohexyl-4,6-dinitrophenol

2. DFT calculations for charge-transfer complexes of phenolic compounds

Table S2. Calculated properties of the CTCs with phenols (at PBE0/6-31+G(d,p)-SMD level). Solvent effects are included.

Charge-transfer complex	Е _{номо} , Eh	Е _{номо} , eV	Е _{LUMO} , Eh	E _{LUMO} , eV	Δ _{LU-HO} , ^a eV	E _{bind} , kcal/mol	DCT ^b	R _{D−A} , ^c Å		
Charge-transfer complexes of phenol										
Phenol – DDQ	-0.253	-6.88	-0.170	-4.67	2.21	4.7	0.114	3.455		
Phenol – TCNQ	-0.244	-6.64	-0.165	-4.49	2.15	3.9	0.007	4.197		
Phenol – TNF	-0.245	-6.67	-0.151	-4.11	2.56	41.1	0.003	4.207		
Charge-transfer complexes of chlorophenols										
o-Chlorophenol – DDQ	-0.257	-6.99	-0.173	-4.71	2.28	3.0	0.073	3.623		
o-Chlorophenol – TCNQ	-0.249	-6.78	-0.165	-4.49	2.29	2.2	0.007	4.216		
o-Chlorophenol – TNF	-0.250	-6.80	-0.151	-4.11	2.69	41.6	0.003	4.250		
<i>p</i> -Chlorophenol – DDQ	-0.250	-6.80	-0.172	-4.68	2.12	2.6	0.097	3.498		
<i>p</i> -Chlorophenol – TCNQ	-0.244	-6.64	-0.166	-4.52	1.12	2.0	0.006	4.210		
<i>p</i> -Chlorophenol – TNF	-0.246	-6.69	-0.150	-4.08	2.61	39.7	0.012	3.397		
	C	harge-trans	fer comple	exes of cres	ols					
m-cresol – DDQ (1)	-0.251	-6.83	-0.168	-4.57	2.26	3.5	0.135	3.250		
m-cresol – DDQ (2)	-0.251	-6.83	-0.167	-4.54	2.29	4.0	0.125	3.377		
<i>m</i> -cresol – TCNQ	-0.241	-6.56	-0.165	-4.49	2.07	2.1	0.008	4.176		
<i>m</i> -cresol – TNF	-0.242	-6.59	-0.150	-4.08	2.51	41.7	0.001	4.369		
o-cresol – DDQ (1)	-0.250	-6.80	-0.167	-4.54	2.26	5.9	0.157	3.249		
o-cresol – DDQ (2)	-0.250	-6.80	-0.168	-4.57	2.23	3.4	0.145	3.408		
o-cresol – TCNQ	-0.239	-6.50	-0.165	-4.49	2.01	2.0	0.007	4.161		
o-cresol – TNF	-0.240	-6.53	-0.150	-4.08	2.45	41.2	0.003	4.056		
	C	harge-transf	er comple	xes of xyler	nols					
2,5-xylenol – DDQ (1)	-0.247	-6.72	-0.166	-4.52	2.20	3.8	0.179	3.233		
2,5-xylenol – DDQ (2)	-0.248	-6.75	-0.164	-4.46	2.29	4.9	0.208	3.276		
2,5-xylenol – TCNQ	-0.235	-6.40	-0.165	-4.49	1.91	2.1	0.006	4.203		
2,5-xylenol – TNF	-0.234	-6.37	-0.151	-4.11	2.26	41.7	0.001	4.200		
2,6-xylenol – DDQ	-0.247	-6.72	-0.166	-4.52	2.20	4.5	0.180	3.287		
2,6-xylenol – TCNQ	-0.235	-6.40	-0.165	-4.49	1.91	2.3	0.006	4.508		
2,6-xylenol – TNF	-0.236	-6.42	-0.150	-4.08	2.44	41.8	0.002	4.150		
Individual phenolic compounds										
PhOH	-0.239	-6.50	-0.010	-0.27	6.23	N/A	N/A	N/A		
ClPhOH	-0.239	-6.50	-0.020	-0.54	5.96	N/A	N/A	N/A		
<i>m</i> -cresol	-0.236	-6.42	-0.009	-0.24	6.18	N/A	N/A	N/A		
o-cresol	-0.234	-6.37	-0.005	-0.14	6.23	N/A	N/A	N/A		

Charge-transfer complex	Е _{номо} , Eh	Е _{номо} , eV	Е _{LUMO} , Eh	E _{LUMO} , eV	Δ _{LU-HO} , ^a eV	E _{bind} , kcal/mol	DCT ^b	R _{D−A} , ^c Å
2,5-xylenol	-0.229	-6.23	-0.005	-0.14	6.09	N/A	N/A	N/A
2,6-xylenol	-0.230	-6.26	0.000	0.00	6.26	N/A	N/A	N/A
DDQ	-0.310	-8.44	-0.179	-4.87	3.57	N/A	N/A	N/A
TCNQ	-0.271	-7.37	-0.167	-4.54	2.83	N/A	N/A	N/A
TNF	-0.310	-8.44	-0.154	-4.19	4.25	N/A	N/A	N/A

 a $\Delta_{\text{LU-HO}},$ energy difference between LUMO and HOMO;

^b DCT, degree of charge transfer;

 c $R_{D-A},$ intermolecular distance between the donor (D) and the acceptor (A);

 E_{bind} , binding energy between D and A [$-E_{bind} = E_{D-A} - E_D - E_A$].

Figure S1. Calculated properties of the CTCs with phenols (at PBE0/6-31+G(d,p) level, solvent effects are included): energy difference between LUMO and HOMO (Δ_{LU-HO}), binding energy between the donor (D) and acceptor (A) (E_{bind}), distance between the donor and acceptor, and degree of charge transfer (CT). Values refer to the lowest-energy geometry of each complex: (1) or (2), from Table S2.

2.1. Optimized geometry and MO of CTCs with phenol

Figure S2. Conformations of phenol–DDQ (a), phenol–TCNQ (b), and phenol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S3. MO energy-level diagrams of CT complexes of phenol solvated in chloroform at PBE0/6-31+G(d,p) level.

2.2. Optimized geometry and MO of CTCs with chlorophenols

Figure S4. Conformations of *o*-chlorophenol–DDQ (a), *o*-chlorophenol–TCNQ (b), and *o*-chlorophenol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S5. MO energy-level diagrams of CT complexes of *o*-chlorophenol solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S6. Conformations of *p*-chlorophenol–DDQ (a), *p*-chlorophenol–TCNQ (b), and *p*-chlorophenol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S7. MO energy-level diagrams of CT complexes of *p*-chlorophenol solvated in chloroform at PBEO/6-31+G(d,p) level.

2.3. Optimized geometry and MO of CTCs with cresols

Figure S8. Conformations of *m*-cresol–DDQ (a), *m*-cresol–TCNQ (b), and *m*-cresol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S9. MO energy-level diagrams of CT complexes of *m*-cresol solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S10. Conformations of *o*-cresol–DDQ (a), *o*-cresol–TCNQ (b), and *o*-cresol–TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S11. MO energy-level diagrams of CT complexes of *o*-cresol solvated in chloroform at PBE0/6-31+G(d,p) level.

2.4. Optimized geometry and MO of CTCs with xylenols

Figure S12. Conformations of 2,5-xylenol–DDQ (a), 2,5-xylenol–TCNQ (b), and 2,5-xylenol – TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S13. MO energy-level diagrams of CT complexes of 2,5-xylenol solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S14. Conformations of 2,6-xylenol–DDQ (a), 2,6-xylenol–TCNQ (b), and 2,6-xylenol – TNF (c) charge-transfer complexes solvated in chloroform at PBE0/6-31+G(d,p) level.

Figure S15. MO energy-level diagrams of CT complexes of 2,6-xylenol solvated in chloroform at PBE0/6-31+G(d,p) level.

3. Optical properties of charge-transfer complexes of phenolic compounds

Figure S16. UV-vis spectra of mixtures of 40 μ mol **phenol** with DDQ in various proportions in 1.8 mL CHCl₃. (Calculated stoichiometry 1:1, calculated stability constant K = 74 M⁻¹).

Figure S17. UV-vis spectra of mixtures of 40 μ mol *m*-cresol with DDQ in various proportions in 1.8 mL CHCl₃. (Calculated stoichiometry 1:1, calculated stability constant K = 107 M⁻¹).

Figure S18. UV-vis spectra of mixtures of 20 μ mol *o*-cresol with DDQ in various proportions in 1.5 mL CHCl₃. (Calculated stoichiometry 1:1).

Figure S19. UV-vis spectra of mixtures of 20 μ mol **2,5-xylenol** with DDQ in various proportions in 1.8 mL CHCl₃. (Calculated stoichiometry 1:1, calculated stability constant K = 40 M⁻¹). Photograph demonstrates colors of 2,5-xylenol (a), DDQ (b), and mixed 2,5-xylenol and DDQ (c) solutions in chloroform.

Figure S20. UV-vis spectra of mixtures of 20 μ mol *p***-chlorophenol** with DDQ in various proportions in 1.2 mL CHCl₃. (Calculated stoichiometry 1:1, calculated stability constant K = 102 M⁻¹). Photograph demonstrates colors of *p*-chlorophenol (a), DDQ (b), and mixed 2,5-xylenol and DDQ (c) solutions in chloroform.

Table S3.	Optical	properties	(λ ст	and	ε _{max}),	stability	constants	(K),	and	stoic	niometry
(determin	ed as tga	α in a Bent-F	renc	h plo	t of lg(/	Abs) vs. lg	g(C _{acceptor})) O	f the	CTCs	with	phenolic
compound	ds and DI	DQ in chloro	form								

Phenolic	λ _{ct} , nm	ε _{max} , cm M ⁻¹	<i>K,</i> M ⁻¹	tgα
compound				
Phenol	562	63.4	74	1.07 ± 0.09
<i>o</i> -Chlorophenol	565	-	_*	-
<i>p</i> -Chlorophenol	588	40.7	102	1.21 ± 0.08
o-Cresol	605	94.4	-	1.13 ± 0.09
<i>m</i> -Cresol	588	104.9	107	1.4 ± 0.1
2,5-Xylenol	637	117.2	40	1.18 ± 0.08
2,6-Xylenol	666	-	-	1.2 ± 0.1

* complex was unstable in solution at high concentrations required for UV-vis detection.

4. SERS sensor characterization

Figure S21. Characteristic contact profilometer image for nanostructured silver layer on the glass substrate.

Figure S22. SERS spectra of different concentrations of *o*-chlorophenol applied on the USR sensor modified with DDQ.

Figure S23. Dependence of the peak area of the CTC phenol:DDQ (5 mM) with a Raman shift of 1276 cm⁻¹ on the concentration of phenol: (1) model solution; (2) extracted from an aqueous solution (P = 0.95; n = 10).

Figure S24. Dependence of the peak area of the CTC 2,6-xylenol:DDQ (5 mM) with a Raman shift of 1276 cm⁻¹ on the concentration of 2,6-xylenol: (1) model solution; (2) extracted from an aqueous solution (P = 0.95; n = 10).

Figure S25. Calibration curves for determination of: (a) phenol with TCNQ-modified SERS sensor by peak intensity at 1605 cm⁻¹, (b) *o*-chlorophenol with DDQ-modified SERS sensor by peak intensity at 1465 cm⁻¹ in the presence of 10 μ M *p*-chlorophenol, (c) *p*-chlorophenol with TNF-modified SERS sensor by peak intensity at 1523 cm⁻¹ in the presence of 10 μ M *o*-chlorophenol, and (d) *m*-cresol with DDQ-modified SERS sensor by peak intensity at 1598 cm⁻¹ in the presence of 10 μ M *o*-cresol (n = 5; P = 0.95) (Raman instrument settings: 632.8 nm laser wavelength, 10% neutral density filter, 10 s acquisition time).

Figure S26. SERS spectra acquired from real objects: 10 μ L of 10-fold diluted with chloroform gasoline fuel on the TNF-modified SERS sensor (a and c, spectrum 1) and 10 μ L of 10-fold diluted with phosphate buffer to pH 7 lake freshwater on the TNF-modified SERS sensor (b and c, spectrum 2). SERS spectra before (a, b) and after (c) baseline subtraction. (n = 5; P = 0.95); (Raman instrument settings: 10%, 632.8 nm, 10 s).