Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supporting Information

(24 pages)

Ultrathin Bi₄O₅Br₂ nanosheets with surface oxygen vacancies and strong interaction with Bi₂O₂CO₃ for highly efficient removal of water contaminants

Lili Zhang,^a Zhiqiang Wang,^a Tong Li,^b Chun Hu*^{ab} and Min Yang^a

^a Key Laboratory of Drinking Water Science and Technology, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

^b Institute of Environmental Research at Greater Bay, Key Laboratory for Water

Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou

University, Guangzhou, 510006, China

Corresponding Author:

Chun Hu

Tel: +86 10 62843038

Fax: +86 10 62923541

Email: huchun@rcees.ac.cn, huchun@gzhu.edu.cn.

Scheme S1 Schematic illustration of the facile synthetic process of $Bi_4O_5Br_2/Bi_2O_2CO_3$.

Scheme S2 Structures of phenol, 2-chlorophenol (2-CP), bisphenol A (BPA), sulfamethoxazole (SMX), ciprofloxacin (CIP) and diclofenac (DCF).

	Mass conten	Mass content of $Bi_4O_5Br_2$ Br/Bi molar ratio		ratio	
Sample	Bulk (XRF)	Bulk	Surface	Bulk	Bulk
		(IC+ICPOES)	(XPS)	(XRF)	(IC+ICPOES)
а	0 wt%	0 wt%	0	0	0
b	10.5 wt%	7.2 wt%	0.0424	0.0501	0.0341
с	18.4 wt%	13.3 wt%	0.0664	0.0879	0.0633
d	26.2 wt%	18.3 wt%	0.0949	0.1260	0.0878
e	36.4 wt%	34.3 wt%	0.1465	0.1756	0.1655
f	49.0 wt%	40.1 wt%	0.1946	0.2381	0.1941

Table S1 Element composition of the $Bi_4O_5Br_2/Bi_2O_2CO_3$ samples.

		Removal			
Catalant	Pollutant	N.	lineralization	Operating	Def
Catalyst	(mg L ⁻¹)	efficienc	efficiency	conditions	Rei
	(8 -)	у			
	2 CD	1000/	05.0/	<i>SWLED</i>	Thin
Bi ₄ O ₅ Br ₂ /Bi ₂ O ₂ CO ₂	2 - CP	100%	83 %	5 W LED	1 h1s
— - - 5— -22 - 2 5	(10)	(60 min)	(60 min)	(400-800 nm)	work
Bi.O.Br./Bi.O.CO.	BPA	100%	62%	5W LED	This
D14O5D12/D12O2CO3	(10)	(15 min)	(60 min)	(400-800 nm)	work
		05.90/		5W white	
$Pd/B1_4O_5Br_2$	BPA	95.8%	-	LED light	[S1]
(1.0 wt% Pd)	(20)	(70 min)		(400-800 nm)	
	2-CP	85%		LED light	[02]
graphene/g-C ₃ N ₄	(10)	(60 min)		(400-800 nm)	[32]
	BPA	99%	80%	LED light	[02]
graphene/g-C ₃ N ₄	(10)	(60 min)	(60 min)	(400-800 nm)	[82]
	2 CD	<u>200/</u>	61 70/	150W Xe	
$Bi-Bi_{2-\delta}MoO_6-0.2$	2-CF	(180 min)	(180 min)	lamp	[S3]
	(10)	(180 mm)	(180 mm)	> 400 nm	
	2 CP	100%	72 0%	150W Xe	
$I_{0.30}\text{-}Bi_2WO_6$	(10)	(240 min)	(200 min)	lamp	[S4]
	(10)	(240 11111)	(300 mm)	> 400 nm	
BOI 110	BPA	95%	95%	500 W Xe	[\$5]
DIOI-110	(10)	(300 min)	(300 min)	lamp	႞ႄၖ႞
BiOBr-OV	BPA	35%	-	300 W Xe	[S6]

Table S2 The catalytic performance comparison of previously reported photocatalystsfor pollutants degradation.

(10)	(150 min)	lamp

Atom	Х	PS	E	DS
ratio	Fresh	Used	Fresh	Used
C/Bi	0.7988	0.9092	1.4867	1.9983
O/Bi	1.5189	1.6421	1.2362	2.4112
Br/Bi	0.1465	0.1265	0.2405	0.2859

Table S3 The comparison for element ratio of the fresh and used $Bi_4O_5Br_2/Bi_2O_2CO_3$.

Table S4 The main products during the photocatalytic degradation of DCF in $Bi_4O_5Br_2/Bi_2O_2CO_3$ suspension at different reaction times, as detected by HPLC-QTOF-MS.

0 min					
Retention time (min)	Molecular structure	Name	m/z		
	Main products on the	e surface of the catalyst			
9.22	Cl H Cl H Cl Cl	2-(2-((2,6- dichlorophenyl)amino)phenyl)acetic acid (DCF)	294		
	Main products in	the aqueous solution			
9.14	Cl H Cl H Cl Cl	2-(2-((2,6- dichlorophenyl)amino)phenyl)acetic acid (DCF)	294		
60 min					
Retention time (min)	Molecular structure	Name	m/z		
Main products on the surface of the catalyst					
9.17		2-(2-((2,6- dichlorophenyl)amino)phenyl)acetic acid (DCF)	294		
	Main products in	the aqueous solution			

7.70		(2-((2- chlorophenyl)amino)phenyl) methyl aldehyde	228
8.10	CI H CH ₂ OH	(2-((2,6- dichlorophenyl)amino)phenyl)methanol	266
9.16		2-(2-((2,6- dichlorophenyl)amino)phenyl)acetic acid (DCF)	294

180 min

Retention time (min)	Molecular structure	Name	m/z		
	Main products on the	e surface of the catalyst			
9.17	CI H OH	2-(2-((2,6- dichlorophenyl)amino)phenyl)acetic acid (DCF)	294		
Main products in the aqueous solution					
3.51		2,6-dichloroaniline	160		
5.06	HO HO HO HO H	2,4-dihydroxy-6- methylaniline	138		

6.06	HO HO OH OH	2,4-dihydroxy-6- aminobenzoic acid	168
7.64		(2-((2- chlorophenyl)amino)phenyl) methyl aldehyde	228
8.10		(2-((2,6- dichlorophenyl)amino)phenyl)methanol	266
9.15	CI H N CI CI	2-(2-((2,6- dichlorophenyl)amino)phenyl)acetic acid (DCF)	294

Fig. S1 Spectral distribution of the LED lamp bead used in this work.

Fig. S2 SEM images of (A) Bi₂O₂CO₃, (B-E) 10.5, 18.4, 26.2, and 49.0 wt% Bi₄O₅Br₂/Bi₂O₂CO₃, (F) Bi₄O₅Br₂.

Fig. S3 SEM elemental mapping results of (A-E) 10.5-49.0 wt% Bi₄O₅Br₂/Bi₂O₂CO₃.

Fig. S4 (A) SEM EDS spectrum, and (B) TEM line scan spectra of $Bi_4O_5Br_2/Bi_2O_2CO_3$.

Fig. S5 2-CP degradation, kinetics, and TOC removal in different suspensions: (a) $Bi_2O_2CO_3$, (b-f) 10.5-49.0 wt% $Bi_4O_5Br_2/Bi_2O_2CO_3$, (g) $Bi_4O_5Br_2$. Experimental condition: $[2-CP]_0=10 \text{ mg } \text{L}^{-1}$, catalyst dosage=1.6 g L⁻¹, light source: visible LED.

Fig. S6 (A) The comparison of 2-CP degradation for different catalysts, (B) TOC removal curve over time, (C) Effect of pH on degradation of 2-CP by $Bi_4O_5Br_2/Bi_2O_2CO_3$, and (D) Effect of the pH regulating solutes. Experimental condition: $[2-CP]_0=10 \text{ mg L}^{-1}$, catalyst dosage=1.6 g L⁻¹, light source: visible LED.

Fig. S7 SEM image, elemental mapping, XRD and FTIR spectra of $Bi_4O_5Br_2/Bi_2O_2CO_3$ after reaction.

Fig. S8 The high-resolution C 1s, O 1s, Bi 4f and Br 3d XPS spectra of $Bi_4O_5Br_2/Bi_2O_2CO_3$: (a) before and (b) after reaction.

Fig. S9 (A) Adsorption and degradation of different pollutants; (B) The corresponding TOC removal in $Bi_4O_5Br_2/Bi_2O_2CO_3$ suspension. Experimental condition: [Pollutant]_0=10 mg L⁻¹ or [DCF]_0=24.8 mg L⁻¹, catalyst dosage=1.6 g L⁻¹, light source: visible LED.

Degradation process of various pollutants

Bi₄O₅Br₂/Bi₂O₂CO₃ showed satisfactory treatment performance for various pollutants, such as phenol, bisphenol A (BPA), sulfamethoxazole (SMX), ciprofloxacin (CIP) and diclofenac (DCF). The removal process of these typical pollutants over Bi₄O₅Br₂/Bi₂O₂CO₃ under visible LED was investigated. As illustrated in Fig. S9, around 10% of adsorption for phenol and 2-CP (both with a hydroxyl group), 46% of adsorption for BPA (with two hydroxyl groups), 60% of adsorption for SMX (with a sulfanilamide group), and nearly complete adsorption for CIP and DCF (both with a carboxylic acid group) were observed. The results indicated that the functional groups of pollutants are key for their adsorption on Bi₄O₅Br₂/Bi₂O₂CO₃. Accordingly, complete removal of phenol substrate from water needed more than 180 min reaction, while only 60 min or about 15 min was required for 2-CP or BPA and SMX. For CIP and DCF, no desorption was observed during 180 min reaction under visible LED. The solution TOC removal reached over 60% for nearly all the tested pollutants.

Fig. S10 The generation of Cl⁻ during DCF degradation.

Fig. S11 Effect of reactive species scavengers on DCF degradation in $Bi_4O_5Br_2/Bi_2O_2CO_3$ suspension under visible LED.

Fig. S12 Spectral absorbance of $Bi_4O_5Br_2/Bi_2O_2CO_3$ with various $Bi_4O_5Br_2$ weight percentages.

Fig. S13 The Mott-Schottky plots of $Bi_4O_5Br_2/Bi_2O_2CO_3$ with various $Bi_4O_5Br_2$ weight percentages in 0.1 M Na₂SO₄ aqueous solution (pH 6.60). S23

References

- S1 N. Li, G. Zhu, M. Hojamberdiev, R. Zhu, J. Chang, J. Gao, Q. Guo, P. Liu, Pd nanoparticle-decorated Bi₄O₅Br₂ nanosheets with enhanced visible-light photocatalytic activity for degradation of bisphenol A, J. Photochem. Photobio. A: Chem. 356, (2018) 440–450.
- S2 F. Li, M. Tang, T. Li, L. Zhang, C. Hu, Two-dimensional graphene/g-C₃N₄ inplane hybrid heterostructure for enhanced photocatalytic activity with surfaceadsorbed pollutants assistant, Appl. Catal. B: Environ. 268 (2020) 118397.
- S3 L. Zhang, Z. Wang, C. Hu, B. Shi, Enhanced photocatalytic performance by the synergy of Bi vacancies and Bi⁰ in Bi⁰-Bi_{2-δ}MoO₆, Appl. Catal. B: Environ. 257 (2019) 117785.
- S4 L. Wang, Z. Wang, L. Zhang, C. Hu, Enhanced photoactivity of Bi₂WO₆ by iodide insertion into the interlayer for water purification under visible Light, Chem. Eng. J. 352 (2018) 664–672.
- S5 M. Pan, H. Zhang, G. Gao, L. Liu, W. Chen, Facet-dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A, Environ. Sci. Technol. 49 (2015) 6240–6248.
- S6 X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, J. A. Wang, Z. Li, L. Qu, M. Shi, L. Ye, Few layered BiOBr with expanded interlayer spacing and oxygen vacancies for efficient decomposition of real oil field produced wastewater, ACS Sustainable Chem. Eng. 6 (2018) 13739–13746.