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Scheme S1. Chemical and structural characteristics of PPCP compounds:1 2 a) DFS; b) SMX; 

c) AMP. Optimized 3D structures drawn by ChemSketch software are also displayed along with 

their molecular dimensions. For DFS, Na+ ion was removed considering its ionic state in 

aqueous solution.



Fig. S1. FTIR spectra and CH bending mode vibrations of the HPOPs. 

Fig. S2. PXRD pattern of of HPOP-1, -2, and -3



Fig. S3. Effect of pH on DFS, SMX, and AMP removal: (a) HPOP-1; (b) HPOP-2. 

Fig. S4. Adsorption kinetics of DFS, SMX, and AMP on (a) HPOP-1 and (b) HPOP-2. 



Fig. S5. Comparisons of equilibrium time vs. adsorption capacity for PPCP adsorption in 
PONF and previously reported benchmark materials. For each material, the equilibrium time 
(teq) was determined to be the time to reach 95% of the saturated adsorption capacity. 

Fig. S6. (a) FTIR spectra and (b) BET surface areas of PONF before and after SMX 
adsorption. 



Fig. S7. Effect of PONF exposure to different pH conditions for 72 h: a) FTIR spectra; b) N2 
adsorption-desorption isotherms at 77 K.

 Fig. S8. (a) C 1s, (b) O 1s, (c) N 1s, and (d) S 2p XPS binding energy peaks of PONF before 
and after SMX capture.



Fig. S9. Determination of pHpzc of PONF by the pH drift method.

 

Fig. S10. Adsorption quantity relationship with the physicochemical characteristics of PPCP: 
(a) molecular weight; (b) Logkow. 



Table S1. Equilibrium isotherm parameters of DFS, SMX, and AMP adsorption on PONF.

Langmuir adsorption isotherm Freundlich adsorption isotherm
PPCP

q
m

[mg.g–1]

K
L

[L.mg–1]
R2 K

F

[mg.g–1]
n R2

DFS 380.8 2.064 0.979 186.9 3.200 0.833

SMX 331.9 2.125 0.930 173.5 3.770 0.760

AMP 251.6 2.496 0.932 144.4 4.815 0.686

Table S2. Comparison of adsorption capacities of the various reported benchmark materials for PPCP removal from water.

Adsorbed amount (Qm) [mg g–1]a Adsorption mechanismAdsorbent
DFS SMX AMP

Ref

ZIF-8 100 - - Hydrogen bonding
PCDM 400 - - Hydrogen bonding

3

ZCPC 159.6 Anion exchange and partitioning 4

Expanded graphite 330 - - Hydrophobicity and energetically 
uniform carbon surface

5

OH-MCOF 203.4 - - π-π, hydrophobic and CH-π interactions 6

CNT/Al2O3 27 - - π-π and van der Waals forces 7

CTAB-ZIF-67 60.5 - - Electrostatic and Lewis acid–base 
interactions

8



Commercial AC 76 - - Electrostatic 9

OAC 487 - - Electrostatic and H-bonding 9

P-POP 217 - - H-bonding, π-π, and van der Waals 
forces

10

Graphene - 239.0 - π-π interactions 11

MCTP - 483 - π-π interactions
Activated carbon - 259 - -

12

Biochar - 19.0 - Electrostatic attractions 13

Carbon PBFG4 - 118 - π-π interactions 14

CuZnFe2O4–biochar - 212 - H-bonding, hydrophobic, and π–π 
electron donor–acceptor interactions

15

PAC14-Vt - 72 - π-π and NH-π interactions 16

Polymeric resin - - 6.9 Hydrogen bonds and Van der Waals 
forces

17

Biomass-AC - - 100 π-π interactions 18

Wood carbon - - 267 Dispersive forces 19

Graphene - - 12.98 π-π interactions and Van der Waals 
forces

20

HPOP-3 or PONF 380.8 331.9 251.6 Hydrogen bonds and hydrophobic,  π-π 
interactions, and  Van der Waals forces

This work

a The amount of PPCPs adsorbed is the monolayer adsorption capacity (Qm) obtained from Langmuir model.
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