### SUPPORTING INFORMATION

#### Mechanistic Insights into Photocatalytic Reduction of Nitric Oxide to Nitrogen

# on Oxygen-Deficient Quasi-Two-Dimensional Bismuth-Based Perovskite

Reshalaiti Hailili,<sup>a,‡</sup> Zhi-Qiang Wang,<sup>b,‡</sup> Hongwei Ji,<sup>a</sup> Chuncheng Chen,<sup>a</sup> Xue-Qing Gong,<sup>b,\*</sup> Hua Sheng,<sup>a,\*</sup>

and Jincai Zhao<sup>a</sup>

<sup>a</sup>Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China.

<sup>b</sup>Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. <sup>‡</sup>These authors contributed equally to this work.

# **CONTENTS**

| Figure S1.   | XRD patterns of SBNO a   | nd SBNO–UT                  |                          | P4           |
|--------------|--------------------------|-----------------------------|--------------------------|--------------|
| Figure S2.   | TEM images of SBNO sa    | mples                       |                          | P5           |
| Figure S3.   | EDS spectra of SBNO–U    | Т                           |                          | P6           |
| Figure S4.   | SEM images of SBNO sa    | mples prepared in HCI aqu   | eous solution            | Р7           |
| Figure S5.   | The vacancy formation    | energy of oxygen with ass   | orted coordination env   | ironments on |
| the surfaces | of SBNO–UT               |                             |                          | P8           |
| Figure S6.   | The vacancy formation    | energies of oxygen vacar    | ncies on the surfaces o  | of SBNO and  |
| SBNO-UT      |                          |                             |                          | P9           |
| Figure S7.   | Comparative high-resolu  | tion XPS spectra of Sr 3d   | and Nb 3d on the surfa   | ace of SBNO  |
| and SBNO-    | -UT                      |                             |                          | P10          |
| Figure S8.   | Comparative TPD–NO sp    | pectra of SBNO and SBNO     | –UT                      | P11          |
| Figure S9.   | Nitrogen adsorption-de   | sorption isotherms and po   | ore size distribution o  | f SBNO and   |
| SBNO-UT      |                          |                             |                          | P12          |
| Table S1.    | Comparison of the state  | -of-the-arts of reported ph | notocatalysts for NO d   | ecomposition |
| with         | light                    | irradiation                 | and                      | high-        |
| temperature  | 28                       |                             | P13                      |              |
| Figure S10   | . Formation of photocata | lytic NO decomposition pr   | oducts with the assistat | nce of SBNO  |
| and SBNO-    | -UT                      |                             |                          | P15          |
| Figure S11   | I. Calculated structures | and adsorption energies of  | of two NO molecules      | adsorbed on  |
| SBNO-UT      | surface                  |                             |                          | P16          |

| Figure S12. Long-term NO decomposition over defective SB | NO–UT and light irradiation (NO in |
|----------------------------------------------------------|------------------------------------|
| Ar)                                                      | P17                                |
| Figure S13. Comparative EPR spectra of SBNO-UT befor     | re and after the photocatalytic NO |
| decomposition tests                                      | P18                                |
| References                                               | P19                                |



Figure SI. XRD patterns of uniform dispersed SBNO nanosheets (with 94% product yields) and ultrathin nanosheets of SBNO (SBNO–UT) (with 98% product yields).



Figure S2. TEM images of SBNO.



Figure S3. EDS spectra of SBNO–UT samples.



Figure S4. SEM images of SBNO samples prepared in HCl aqueous solution.



Figure S5. Calculated the structures and the vacancy formation energies of oxygen with assorted

coordination environments on the SBNO (001) surface.



**Figure S6.** Calculated the structure and the vacancy formation energies of oxygen vacancies on the bulk of SBNO. (a) bulk of SBNO, (b) the oxygen vacancy of SBNO.



**Figure S7.** Comparative high resolution XPS spectra of Sr 3d and Nb 3d of SBNO and SBNO–UT, respectively.

| Photocatalyst                                       | Optimum conditions                 | Conversion (%)             | Main products                                        | Formed NO <sub>2</sub> (ppb) | S (%)        | Ref.  |
|-----------------------------------------------------|------------------------------------|----------------------------|------------------------------------------------------|------------------------------|--------------|-------|
|                                                     | 0.019 g, 1040 ppb, 1 L/min         | 50.00 (in Air)             |                                                      | 400.1 1.501.2                | 0.0 and 50.0 | [1]   |
| 1102                                                | NO in Air/N <sub>2</sub> , 300 min | 34.61 (in N <sub>2</sub> ) | $NO_2$ , $NO_3$                                      | 490.1 and 581.2              |              |       |
|                                                     | 0.019 g, 1040 ppb, 1 L/min         | 50.00 (in Air)             |                                                      | 490.1 and 581.2              | 0.0 and 50.0 | [1]   |
| Fe-doped $TiO_2$                                    | NO in Air/N <sub>2</sub> , 300 min | 34.61 (in N <sub>2</sub> ) | $N_2, O_2, NO_2, NO_3^{-1}$                          |                              |              |       |
|                                                     | 500 ppb (in Air), 0.05 g, 420 nm,  | 45.0                       |                                                      | 5.00                         | NG           | [2]   |
| Ag/11O <sub>2-X</sub>                               | 21 min                             | 45.0 $N_2, O_2, NO_3^-$    |                                                      | 5.00                         | NG           | [2]   |
|                                                     | 1500 ppb (in Ar), 0.1 g, Xe lamp   | 0.01                       | NO <sub>2</sub> , NO <sub>3</sub> -                  | NG                           | 0            | [3]   |
| g-C <sub>3</sub> N <sub>4</sub>                     | 420 nm, 60 min                     |                            |                                                      |                              |              |       |
| $C \sim C N$                                        | 1500 ppb (in Ar), 0.1 g, Xe lamp   | 34.0                       | NO <sub>2</sub> , N <sub>2</sub> , NO <sub>3</sub> - | NG                           | 66.0         | [3]   |
| $C_v$ -g- $C_3N_4$                                  | 420 nm, 60 min                     |                            |                                                      |                              |              |       |
| $TiO_{1}$ with zeolites (Si/Al)                     | 100 mg, Hg lamp (> 280 nm)         | NC                         | N <sub>2</sub> , O <sub>2</sub> , N <sub>2</sub> O   | NG                           | 88.0         | [4]   |
| $11O_2$ with zeolites (SI/AI)                       | 7.8 μmol NO                        | NO                         |                                                      |                              |              |       |
| Ti-HMS catalyst                                     | 100 mg, Hg lamp (> 280 nm)         | NG                         | N <sub>2</sub> , O <sub>2</sub> , N <sub>2</sub> O   | NG                           | 25.0         | [5-6] |
|                                                     | 25 ml/min, 7.8 µmol NO in He       |                            |                                                      |                              |              |       |
| Cu <sup>+</sup> /ZSM-5, Cu <sup>+</sup> /Y-zeolite, | Hg lamp (>280 nm)                  | Cu <sup>+</sup> /ZSM-5 the | Na Oa NaO                                            | NG                           | NG           | [7]   |
| $Cu^+/SiO_2$                                        | NO (2 ~20 Torr), 240 min           | highest activity           | $1n_2, 0_2, 1n_20$                                   | no                           |              |       |
| TiO <sub>2</sub> on ZSM-5                           | Hg lamp, 10 Torr NO                | NG                         | N <sub>2</sub> , O <sub>2</sub> , N <sub>2</sub> O   | NG                           | NG           | [8]   |

**Table S1.** Comparison of the state-of-the-arts of reported photocatalysts for NO decomposition with light irradiation and high-temperatures.

| SBNO-UT nanosheets    | 120 mg, 13.5 ppm NO in Ar (800          | 19.72 | N <sub>2</sub> , NO <sub>2</sub> , O <sub>2</sub> , NO <sub>3</sub> - | 12.24   | 0.004 | This work   |
|-----------------------|-----------------------------------------|-------|-----------------------------------------------------------------------|---------|-------|-------------|
|                       | ppb), 1.0 L·min <sup>-1</sup> , 180 min |       |                                                                       |         |       |             |
| SBNO-UT nanosheets-Vo | 120 mg, 13.5 ppm NO in Ar (800          | 47.63 | N <sub>2</sub> , O <sub>2</sub> , NO <sub>3</sub> -                   | 6.01 95 | 05.0  | 0 This work |
|                       | ppb), 1.0 L·min <sup>-1</sup> , 180 min |       |                                                                       |         | 95.0  |             |

\*S is representing "Selectivity"; NG is "Not Given".



Figure S8. Comparative TPD–NO spectra of SBNO and SBNO–UT, respectively.



**Figure S9.** (a) Nitrogen adsorption-desorption isotherms, and (b) *pore size distribution* of SBNO and SBNO–UT, respectively.



**Figure S10.** Formation of photocatalytic NO decomposition products with the assistance of SBNO and SBNO–UT, respectively.



**Figure S11.** Calculated structures, spin-polarized charge densities and adsorption energies of two NO molecules adsorbed on SBNO–UT surface. Red: O atoms; green: Sr atoms; purple: Bi atoms; light blue: Nb atoms; Blue: N atoms, Yellow: O atoms in NO, respectively.



Figure S12. Long-term NO decomposition over defective SBNO-UT and light irradiation (NO in

Ar).



Figure S13. Comparative EPR spectra of SBNO–UT before and after the photocatalytic NO decomposition tests.

#### **References:**

- Q. P. Wu, R. V. D. Krol, Selective Photoreduction of Nitric Oxide to Nitrogen by Nanostructured TiO<sub>2</sub> Photocatalysts: Role of Oxygen Vacancies and Iron Dopant. *J. Am. Chem. Soc.*, 2012, *134*, 9369–9375.
- (2) Y. Y. Duan, M. Zhang, L. Wang, F. Wang, L. P. Yang, X. Y. Li, C. Y. Wang, Plasmonic Ag-TiO<sub>2-x</sub> Nanocomposites for the Photocatalytic Removal of NO under Visible Light with High Selectivity: The Role of Oxygen Vacancies. *Appl. Catal. B-Environ.*, 2017, 204, 67–77.
- (3) G. H. Dong, D. L. Jacobs, L. Zang, C. Y. Wang, Carbon Vacancy Regulated Photoreduction of NO to N<sub>2</sub> over Ultrathin g-C<sub>3</sub>N<sub>4</sub> Nanosheets. *Appl. Catal. B-Environ.*, 2017, 218, 515–524.
- (4) J. L. Zhang, Y. Hu, M. Matsuoka, M. Yamashita, M. Minagawa, H. Hidaka, M, Anpo. Relationship between the Local Structures of Titanium Oxide Photocatalysts and Their Reactivities in the Decomposition of NO. J. Phys. Chem. B, 2001, 105, 8395–8398.
- (5) Y. Hua, S. Higashimoto, G. Martra, J. L. Zhang, M. Matsuoka, S. Coluccia, M. Anpo, Local Structures of Active Sites on Ti-MCM-41 and their Photocatalytic Reactivity for the Decomposition of NO. *Catal. Lett.*, 2003, 90, 3–4.
- (6) J. L. Zhang, M. Minagawa, T. Ayusawa, S. Natarajan, H. Yamashita, M. Matsuoka, M. Anpo, In Situ Investigation of the Photocatalytic Decomposition of NO on the Ti-HMS under Flow and Closed Reaction Systems. *J. Phys. Chem. B*, 2000, *104*, 11501–11505.
- (7) M. Anpo, Approach to Photocatalysis at the Molecular Level Design of Photocatalysts, Detection of Intermediate Species, and Reaction Mechanisms. *Sol. Energy Mater. Sol. C.*, 1995, 38, 221–238.
- (8) S. C. Zhang, N. Fujii, Y. Nosaka, The Dispersion Effect of TiO Loaded over ZSM-5 Zeolite. J. Mol. Catal. A, 1998, 129, 219–224.