Supplementary Information for

Emerging investigator series: Linking Nanoparticle Infiltration and Stomatal Dynamics for Plant Nanobionics

Volodymyr B. Koman¹, Minkyung Park¹, Tedrick Thomas Salim Lew^{1,2,3}, Stefan Wan¹, Elliott S. Yarwood¹, Xun Gong¹, Tafsia S. Shikdar¹, Ronald J. Oliver¹, Leslie Jianqiao Cui¹, Pavlo Gordiichuk¹, Rajani Sarojam^{4,5}, and Michael S. Strano^{1,5,*}

¹77 Massachusetts Ave., Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

² Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore

³ Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore

⁴ Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore

⁵ Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore

*Corresponding author's email address: strano@mit.edu

Figure S1. Mechanical model of the infiltration system. As the needless syringe applies force (F) to the assembly, it displaces a leaf and a support layer with the respective spring constants.

Figure S2. Various compression scenarios for the infiltration system. (i) When the support material is harder than the leaf, then the leaf compression will dominate, leading to early damage. (ii) When the spring constants are commensurate, support adjustments helps to planarize leaf surface, minimizing leaks. (iii) When the support is too soft, then its compression will be large, promoting leaf bending that necessarily impedes infiltration.

Figure S3. Effects of material infiltration. Leaf assimilation of Peace Lily plants one day before infiltration (a), right after infiltration (b), three days after (c), and seven days after (d). Measurements were taken around 12-2 PM local time. Plants were infiltrated with water and buffer solutions (n=3).

Applied force (N)	Normalized	Standard deviation	P value for unpaired	
	infiltration efficiency	(n=5)	t-test	
0.25	0.03075	0.01325	1E-4	
0.5	0.878	0.54125	0.57	
0.75	1.1405	0.26625	0.58	
1	1.03375	0.30875	N/A	
1.25	1.06275	0.403	0.91	
1.5	0.95375	0.458	0.74	
1.75	0.78825	0.47875	0.25	
2	0.578	0.38275	0.07	

Table S1. Statistical analysis of the infiltration force results.

Table S2. Statistical analysis of the leaf assimilation of Piece Lily plants at $Q_{in} = 600 \ \mu \text{mol}/(\text{m}^2\text{s})$.

	Assimilation	Standard deviation (n=3)	Assimilation	Standard deviation (n=3)	Nanotubes	Assimilation	P value for unpaired t-test (water vs. control)	P value for unpaired t- test (nanotubes vs. control)
	Control		Water		Nanotubes			
Day -1								
	2.5	0.24	2.53	0.28	2.43	0.16	0.89	0.7
Day 0								
	2.25	0.28	1.43	0.36	0.42	0.34	0.04	0.002
Day 3								
	2.43	0.38	2.05	0.35	1.01	0.29	0.38	0.0068
Day 7								
	1.99	0.31	1.89	0.37	1.86	0.39	0.74	0.67