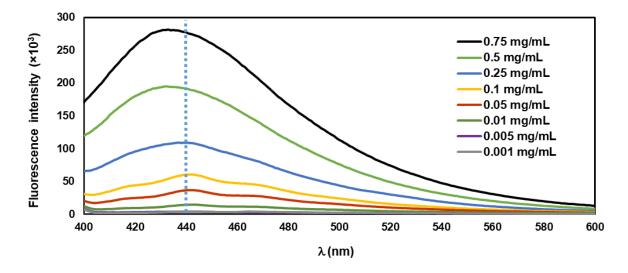
Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021


Supporting Information

Effect of Polycation Nanostructures on Cell Membrane Permeability and Toxicity

Magdalena Wytrwal-Sarna, Paulina Knobloch, Sławomir Lasota, Marta Michalik, Maria Nowakowska, Mariusz Kepczynski

1. Determination of the critical micellar concentration (CMC) for PAMAlks.

The CMC value for the polycations was determined using a fluorescent molecular probe technique as described previously.¹ A stock solution of 1,6-diphenyl-1,3,5-hexatriene was prepared in methanol at a concentration of 0.4 mM by short sonication in a bath sonicator. A series of samples containing PAMAlks at various concentrations (0 - 0.1 mg/mL) and a constant DPH concentration (4 μ M) were prepared and stirred for 4 hours in the dark. The fluorescence spectra of these samples were measured using the FS5 Spectrofluorometer (Edinburgh Instrument) (**Fig. S1**). The samples were excited at 350 nm and the fluorescence intensity at 440 nm in the presence of PAMAlks was analyzed. Results are presented in **Table 1** and **Fig. 2** and **S2**.

Fig. S1 Fluorescence spectra of DPH ($c_{DPH} = 4 \mu M$, $\lambda_{ex} = 350 nm$) at selected concentrations of PAMBut.

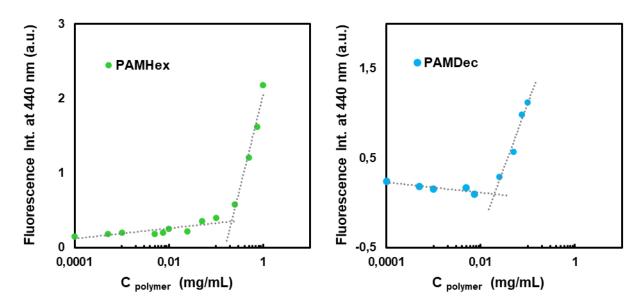
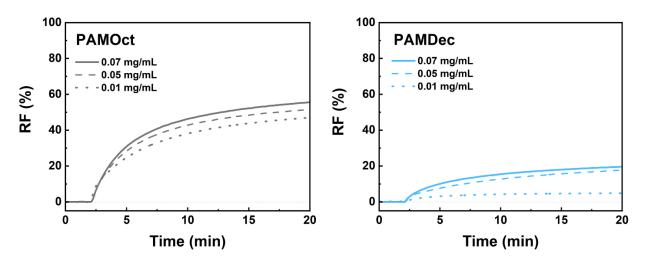


Fig. S2 The fluorescence intensity of DPH probe (cDPH = 4 μ M, λ ex = 350 nm,) at 440 nm as a function of the concentration of PAMHex and PAMDec.

2. Dynamic light scattering (DLS) and ζ-potential measurements of polymers

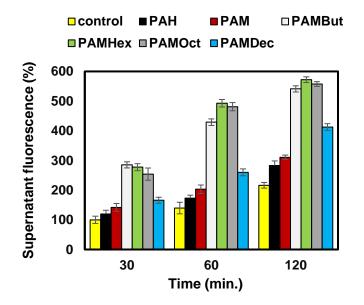
The distribution profiles of the hydrodynamic diameters were measured by light scattering experiments (Zetasizer, Malvern) for the aqueous solution of PAMAlks at the concentration of 1 mg/mL. Samples were filtrated by 0.45 µm pores size filters. The mean hydrodynamic

diameter (dz), dispersity (PDI), and ζ -potential for the observed objects are presented in Table 2.

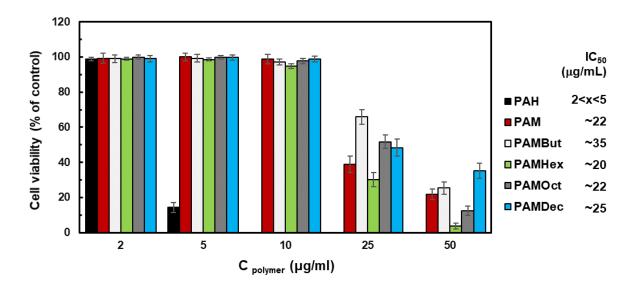

3. Dynamic light scattering (DLS) and ζ -potential - optimization of liposomes coating by polymers

Polymer-coated anionic liposomes were prepared at various lipid/polymer weight ratios in a 1 mM NaCl solution. Different volumes of the PAM and PAMAlks solutions (0.5 mg/mL) were mixed with the liposome suspension (2.5 mg in 0.5 mL) to the final volume of 1 mL. The optimal polymer content was determined from DLS and ζ -potential measurements. The crucial criteria were: small size and PDI as well as overloading the ζ -potential of the POPC/POPA liposomes to stable positive values (above 30 mV). The optimal polymer content is indicated in bold in **Table S1**.

Polycation ζ-potential PDI dz (nm) System content (mV)(n = 5)(*n* = 5) (wt%) (n = 8)Liposomes 0 112.0 ± 0.9 0.08 ± 0.02 -42.7 ± 2.8 (POPC/DOPA) $> 10^{5}$ -17.4 ± 1.4 1.6 0.92 ± 0.18 + PAM2.4 318.5 ± 0.3 0.34 ± 0.09 19.1 ± 1.5 3.2 175.6 ± 0.3 0.21 ± 0.04 32.9 ± 2.6 **4.0** 153.7 ± 0.2 0.16 ± 0.02 34.2 ± 3.0 4.8 149.1 ± 0.2 0.21 ± 0.02 37.2 ± 2.9 5.6 139.7 ± 0.1 0.13 ± 0.03 39.1 ± 1.1 160.2 ± 1.8 19.9 ± 1.0 + PAMBut 3.2 0.21 ± 0.03 4.0 153.5 ± 2.1 0.17 ± 0.02 22.4 ± 2.4 4.8 150.1 ± 3.2 0.15 ± 0.05 27.0 ± 1.5 5.6 156.0 ± 3.1 0.13 ± 0.04 37.9 ± 1.8 6.4 147.6 ± 2.0 36.0 ± 1.9 0.13 ± 0.03 7.2 140.5 ± 0.1 0.13 ± 0.04 36.3 ± 2.2 + PAMHex 2.4 $> 10^{5}$ 1.00 ± 0.00 -12.0 ± 1.0 $> 10^{5}$ 3.2 1.00 ± 0.00 7.0 ± 1.3 4.0 307.6 ± 108.8 0.38 ± 0.06 20.5 ± 0.7 4.8 146.5 ± 1.4 0.12 ± 0.02 27.0 ± 1.8 5.6 142.8 ± 1.2 0.14 ± 0.01 32.3 ± 2.4 138.0 ± 2.6 33.2 ± 1.4 6.4 0.14 ± 0.02 + PAMOct $> 10^{5}$ 4.0 1.00 ± 0.00 0.0 ± 0.0 4.8 $> 10^{5}$ 1.00 ± 0.00 15.6 ± 0.9 5.6 312.1 ± 10.2 24.6 ± 1.4 0.40 ± 0.06 **6.4** 209.8 ± 6.8 0.34 ± 0.04 33.3 ± 0.9 7.2 198.4 ± 3.8 0.30 ± 0.02 35.2 ± 1.2 8.0 193.0 ± 2.9 38.4 ± 2.4 0.29 ± 0.03 + PAMDec $> 10^{5}$ 5.6 1.00 ± 0.00 -7.2 ± 5.1 $> 10^{5}$ 1.00 ± 0.00 0.0 ± 0.0 6.4 7.2 250.1 ± 10.3 0.28 ± 0.06 15.7 ± 2.6 8.0 26.6 ± 3.1 163.0 ± 2.4 0.14 ± 0.09 8.8 157.5 ± 4.6 0.16 ± 0.08 31.9 ± 2.5 9.6 151.4 ± 1.7 0.12 ± 0.02 30.2 ± 1.0


Table S1 The values of the mean hydrodynamic diameter (dz), polydispersity index (PDI), and the ζ -potential at 298 K of the POPC/DOPA liposomes ($c_{lipid} = 1.25 \text{ mg/mL}$) dispersed in the 1 mM NaCl solution at pH 7.4 and treated with polycations (values are the mean \pm standard deviation). The chosen optimized polycation content was marked in bold.

4. Calcein release from liposomes


Fig. S3. Time-course of calcein leakage from the anionic SUVs treated with the polycations at 2 min. Liposomes were treated with PAMOct and PAMDec at above their CMC: 0.07 and 0.05 mg/mL and below CMC: 0.01 mg/mL. The dye was completely released by adding Triton X-100 and set as 100% leakage.

5. Calcein release from HSFs

Fig. S4 Fluorescence intensity of calcein in supernatants after 30, 60, and 120 min incubation of HSFs with polymer solutions (PAH, PAM, and PAMAlks - 10 μ g/mL). As a control, cells untreated with polymers were used. Average values +/- s.d. of two different experiments, each in triplicate, are shown.

6. Polymers cytotoxicity after 48h of HSFs culture.

Fig. S5 Cytotoxicity of the polyelectrolytes to HSFs was measured by the FDA-EB assay. HSFs were incubated for 48 h in a medium containing the various polymers: PAH, PAM, and PAMAlks. The IC₅₀ values after 48 h of incubation assessed against HSFs are given on the right.

References:

 A. Chattopadhyay and E. London, Fluorimetric Determination of Critical Micelle Concentration Avoiding Interference from Detergent Charge, *Anal. Biochem.*, 1984, 139, 408-412.