Preparation of magnetic covalent triazine frameworks by ball milling for efficient removal of PFOS and PFOA substitutes from water

Wei Wang^{a,b}, Haipei Shao^a, Chang Sun^b, Xiangzhe Jiang^a, Shuangxi Zhou^b, Gang Yu^a, Shubo Deng^{a,*}

^a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control,

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC),

Tsinghua University, Beijing 100084, China

^b State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China

* Corresponding author, Tel.: +86-10-62792165. Fax: +86-10-62794006.

E-mail: dengshubo@tsinghua.edu.cn (S. Deng)

Emerging PFAS	CAS No.	Structural formula	Molecular	Log Kow
			weight	
OBS	87-56-8	F ₃ C—FC CF ₃ CF ₃	626	4.48 (Chen et
		F ₃ C ^{-FC} CF ₃ SO ₃ Na		al., 2020)
HFPO-TA	13252-14-7		496.1	5.55 (Pan et
				al., 2017)

Table S1 Primary	physiochemical	properties of OBS a	nd HFPO-TA
------------------	----------------	---------------------	------------

Table S2 Parameters of the pseudo-first-order and pseudo-second-order equations for fitting OBS

and HFPO-TA adsorption kinetics

Emerging	Pseudo-first-order parameter ^a		Pseudo-second-order parameter ^b			
PFAS	q _e	\mathbf{k}_1	\mathbb{R}^2	q _e	V ₀	\mathbb{R}^2
	(mmol/g)	(h^{-1})		(mmol/g)	(mmol/g/ł	n)
OBS	0.91	12.48	0.943	0.96	7.61	0.988
HFPO-TA	0.74	49.13	0.991	0.75	44.42	0.998

^a Pseudo-first-order model: $q_t = q_e \left(1 - e^{\frac{-k_1 t}{2.303}}\right)$

^b Pseudo-second-order model: $t/q_t = 1/(k_2 q_e^2) + t/q_e = 1/v_0 + t/q_e$

Emerging	Intra-particle diffusion parameter				
PFAS	k _d	с	\mathbb{R}^2		
	$(mmol/g/h^{1/2})$	(mmol/g)			
OBS	0.786	0.125	0.904		
HFPO-TA	1.014	0.153	0.754		

Table S3 Parameters of the intra-particle diffusion model for fitting OBS and HFPO-TA adsorption

Intraparticle diffusion model: $q_t = k_d t^{1/2} + c$, where $k_d \pmod{g/h^{1/2}}$ is the diffusion rate constant and c (mmol/g) is the coefficient of boundary layer thickness

Table S4 Parameters of the Langmuir and Freundlich models for fitting OBS and HFPO-TA

adsorption isotherms

Emerging	Langmuir parameters ^a			Freundlich parameters ^b		
PFAS	$q_{\rm m}$	b	\mathbb{R}^2	K_{f}	n	\mathbb{R}^2
	(mmol/g)	(L/mmol)		$(mmol^{1-1/n} L^{1/n}/g)$		
OBS	1.18	145.68	0.605	1.22	9.66	0.942
HFPO-TA	1.02	16.80	0.779	0.97	5.20	0.967

^a Langmuir model: $q_e = q_m C_e / (1/b + C_e)$ ^b Freundlich model: $q_e = K_f C_e^{1/n}$

Fig. S1 Nitrogen adsorption isotherm curves on CTF1, CTF2, and CTF2/Fe₃O₄ at CTF/Fe₃O₄ ratio

of 6:1.

Fig. S2 SEM images of CTF1, CTF2 and CTF2/Fe₃O₄ as well as the SEM-EDS analysis on Fe element (bright green color) of CTF2/Fe₃O₄.

Fig. S3 XRD pattern of Fe₃O₄.

Fig. S4 XRD pattern of CTF1/Fe₃O₄ at ratio of 6:1.

Fig. S5 FTIR spectra of Fe₃O₄, CTF2 and CTF2/Fe₃O₄.

Fig. S6 N1s spectrum of CTF1/Fe₃O₄ at CTF/Fe₃O₄ ratio of 6:1.

Fig. S7 OBS and HFPO-TA removal byFe₃O₄ and CTF2/ Fe₃O₄.

Fig. S8 BET surface area of CTFs and CTFs/ Fe₃O₄ composites with different mass ratios.

Fig. S9 Effects of CTF/Fe₃O₄ ratios on OBS adsorption at adsorbent dosage of 0.125g/L.

Fig. S10 Intra-particle diffusion model for fitting OBS and HFPO-TA sorption kinetics.

Fig. S11 zeta potentials of CTF2/Fe₃O₄ at different solution pH.

Fig. S12 FTIR spectra of CTF2/Fe₃O₄ before and after OBS and HFPO-TA adsorption.

Fig. S13 XPS wide scan spectra of CTF2/Fe₃O₄ before and after OBS and HFPO-TA adsorption.

Fig. S14 Ratios of chloride desorbed to substitutes adsorbed as well as solution pH after adsorption with 0.015 g of CTF2/Fe₃O₄ in 40 mL of 1.2 mmol/L PFAS solution at pH 5.

(The contribution of OH- was calculated according to the formula

 $CB_{OH} = C_{OH}/(C_{OH} + C_{CI}) \times 100\%$, where CB_{OH} is contribution of OH^- in the ion exchange process, C_{OH} and C_{CI} is the released amount after PFAS adsorption.)

References

Chen, H., Munoz, G., Duy, S. V., Zhang, L., Yao, Y., Zhao, Z., Yi, L., Liu, M., Sun, H., Liu, J., Sauvé, S., 2020. Occurrence and distribution of per- and polyfluoroalkyl substances in Tianjin, China: The contribution of emerging and unknown analogues. Environ. Sci. Technol. 54 (22), 14254-14264.

Pan, Y., Zhang, H., Cui, Q., Sheng, N., Yeung, L. W. Y., Guo, Y., Sun, Y., Dai, J., 2017. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern. Environ. Sci. Technol. 51(17), 9553-9560.