Electronic Supplementary Information

Reply to the Comment on "Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts" by S. Husted, P. Møs, S. Le Tougaard, A. Pinna and F. Minutello., *Environ Sci. Nano*, DOI: 10.1039/D1EN00630D

Jie Hong^a, Chao Wang^a, Dane C. Wagner^b, Jorge L. Gardea-Torresdey^c, Feng He^{a*}, Cyren M. Rico^{b*}

^aCollege of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China

^bChemistry and Biochemistry Department, Missouri State University, Springfield, MO 65897

^cDepartment of Chemistry and Biochemistry, The University of Texas, El Paso, TX 79968, United States

Contains two tables

Table S1. Advantages of foliar spray of NPs relative to control as foliar application of non-NPs or soil application of either NPs or non-NPs. Citations follow that of Hong et al. (2021); citations for additional new references are listed below.

Foliar application of NPs	Control	Advantages of foliar relative to control	Ref
NPs Foliar application of copper nanoparticles (0.5, 1.0, and 1.5 g/L) Plant: Peppermint (<i>Metha piperita</i> L.)	Foliar application of copper sulfate (0.5, 1.0, and 1.5 g/L)	 Copper nanoparticles (1.0 g/L) increased chlorophyll content and essential oil percentage by 35% and 20% higher than control, respectively. The copper sulfate (0.5 g/L) increased dry matter yield up to 58% higher than control. Copper nanoparticles (1.0 g/L) increased menthol, menthone and menthofuran content up to 15, 25 and 65% higher than in control, respectively. Results showed that copper nanoparticles fertilizer 0.5, 1.0 and 1.5 g/L significantly increased all forms of chlorophyll content of 25, 35 and 45% and essential oil percentage 10, 20 and 23% 	New Ref. 1
		higher than that for control, respectively.	
Foliar application of nano-iron chelate, nano-zinc Plant: <i>Zea mays</i>	Foliar application of chemical iron chelate, chemical zinc fertilizer	 Application of nano-forms of fertilizers, compared to chemical forms of fertilizers, increased the phosphorus concentration, biomass, and crude protein and soluble carbohydrate concentration. Both forms of iron fertilizer increased leaf chlorophyll concentration, compared to other fertilizers and control. Nano-Zn treatment resulted in higher leaf chlorophyll concentration than that for the chemical form of zinc, water and control treatments. Plant height and total dry biomass (TDB) responses were generally greater in the nano-iron chelate treatment. Nano-zinc spraying increased plant height by 23.6 and TDB by 14.5%, respectively, compared with the control. The nano-iron treatment resulted in the highest crude protein, soluble carbohydrates and phosphorus concentration and lowest crude fiber content as compared with the other treatments. Zinc treatment increased the soluble carbohydrate concentration compared with the water and control treatment. Nano forms increased the phosphorus, TDB, crude protein and soluble carbohydrate concentration compared to chemical forms. 	112

		The beneficial effects of nano zinc on corn plants	
		were more pronounced than of chemical zinc.	
Foliar application of	No treatment	The results indicate that titanium dioxide (TiO ₂)	115
TiO ₂ nanoparticles		nanoparticles (NPs) lead to a significant increase	
(0, 2, 4 and 6 ppm)		in plant height, fruit yield and number of	
		branches. It also caused an increase in amino	
Plant: Coriander		acids, total sugars, total phenols, total indols and	
(Coriandrum sativum		pigments.	
L.)		The contents of chlorophyll-a, chlorophyll-b and	
		carotenoids were significantly increased with	
		foliar application on coriander with varying TiO ₂	
		nanoparticles concentrations (2, 4 and 6 mg/L).	
		The foliar application of coriander with TiO ₂	
		nanoparticles at 2, 4 and 6 mg/L had a	
		significantly increased with total amino acids and	
		total sugars content as compared with control	
		ones.	
Foliar application of	No treatment	The obtained results revealed that the foliar	65
SNPs nanoparticles		spraying tomato leaves with 200 ppm sulfur	
(0, 100, 200, and 300		nanoparticles are very beneficial to plant growth	
ppm)		and produced healthy plant with greener leaves	
		and high quality of tomato fruits compared with	
Plant: Tomato		control.	
(Solanum		The plant height and root increase with increasing	
lycopersicum)		sulfur nanoparticles up to 200 ppm and then	
		decrease with 300 ppm. This indicates that the	
		organic materials in plant tissue needs proper	
		quantity of SNPs to form organic-sulfur	
		compounds, which helps the plant to grow	
		healthy and to defend itself and has antimicrobial	
		activity.	110
Foliar-sprayed with	(Fe-EDDHA)	Iron treatments improved maize photosynthesis and	113
or without 100 µg Fe		hydrogen peroxide and superoxide anion	
g^{-1} in the forms of		scavenging capacity and lowered the rate of	
Fe_3O_4 nanoparticles		membrane lipid peroxidation. Iron treatment also	
(NPS) and ethylene		accelerated vegetative growth and caused earlier	
diamine-N,N-bis(2-		entrance to the generative phase. Differences	
nyaroxyphenylacetic		E O ND word portionaries actionalistic di	
acia) re souium		re304 INFS were particularly noticeable in the	
FUDHA)		generative growth phase. Improvement of	
		more propounced in Fe O. NDs treatments	
Plant: Zag mans		(164% 200% 300% and 200% of the control	
1 Iani. Leu muys		respectively)	
Plant: Zea mays		(164%, 200%, 300%, and 200% of the control, respectively).	

Foliar application of		The application of the Cu nanoparticles induced the	88
Cu nanoparticles (50,		production of fruits with greater firmness.	
125, 250, 500 mg/L)		Vitamin C, lycopene, and the ABTS antioxidant	
		capacity increased compared to the Control. In	
Plant: Tomato		addition, a decrease in the ascorbate peroxidase	
(Solanum		(APX) and glutathione peroxidase (GPX)	
lycopersicum)		enzymatic activity was observed, while the	
		superoxide dismutase (SOD) and catalase (CAT)	
		enzymes showed a significant increase. The	
		application of Cu NPs induced a greater	
		accumulation of bioactive compounds in tomato	
		fruits.	
Foliar application of	root exposure	Aerosol mediated application was found to be more	100
TiO ₂ or ZnO NPs		effective than the soil mediated application on	
		the uptake of the nanoparticles was in plants.	
Plant: Tomato		The results indicated that there is a critical	
(Solanum		concentration of TiO ₂ and ZnO nanoparticles up	
lycopersicum)		to which the plant's growth and development are	
		promoted; with no improvement beyond that.	
		Overall, it was observed that foliar application	
		induced more lycopene biosynthesis than soil	
		application.	
		11	
Foliar application and		Foliar application and seed treatment with SNPs	New Ref. 2
Foliar application and seed treatment with		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i>		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs)	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application.	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30-	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol.	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of The expression of pathogenesis-related and	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of The expression of pathogenesis-related and antioxidase-related genes (upregulated by	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of The expression of pathogenesis-related and antioxidase-related genes (upregulated by 11–352%) and enhancement of the activity and	New Ref. 2
Foliar application and seed treatment with SNPs (30-100 mg/L) Plant: Tomato (<i>Solanum</i> <i>lycopersicum</i>)		Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 100 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30- SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of The expression of pathogenesis-related and antioxidase-related genes (upregulated by 11–352%) and enhancement of the activity and content of disease-related biomolecules	New Ref. 2

		The oxidative stress in tomato shoots and roots, the root plasma membrane damage, and the growth of the pathogen in stem were all significantly decreased by SNPs. In this work, foliar application and seed treatment with SNPs affectively controlled the growth and	
		damage from fusarium wilt in tomatoes, as	
		determined by phenotype, biomass,	
		photosynthetic parameters, and disease	
		incidence.	
Foliar spray of TiO ₂	Root application	The impact of TiO_2NPs (0, 100, 250 mg/L) and Cd	New Ref. 3
nanoparticles		(0, 50mM) co-exposure on hydroponic maize	
(0, 100, 250 mg/L)		(Zea mays L.) was determined under two	
		exposure modes. Results showed that root co-	
Plant: Zea mays		exposure to TiO ₂ NPs and 100 mg/L Cd	
		significantly enhanced Cd uptake and produced	
		greater phytotoxicity in maize than foliar	
		exposure to TiO ₂ NPs. Meanwhile, plant dry	
		weight and chlorophyll content showed a	
		reduction of 45.3% and 50.5%, respectively,	
		when compared with single Cd treatment. In	
		addition, the accumulation of Ti in shoots and	
		roots increased by 1.61 and 4.29 times,	
		respectively when root exposure to 250 mg/L	
		TiO_2NPs . By contrast, foliar exposure of	
		TiO_2NPs could markedly decrease shoot Cd	
		contents from 15.2% to 17.8%.	
		Therefore, foliar spray of TiO_2NPs is considered as	
		an effective and alternative way to protect maize	
		seedling against Cd stress.	
Foliar spray of Fe_2O_3	Soil	Furthermore, IONPs-Cit significantly enhanced	New Ref. 4
NPS (IONPs)	amendment	photosynthetic parameters when sprayed foliarly	
		at the eight-trifoliate leaf stage ($P < 0.05$). The	
Plant: Soybean		increases in photosynthetic rates following	
(Glycine max L.)		spraying were attributed to increases in stomatal	
		opening rather than increased CO_2 uptake	
		activity at the chloroplast level. A more	
		pronounced positive effects of IONPs via foliar	
		application than by soil treatment was observed.	
		aitria agid at IONDs to sitrate malor ratio of 1.2	
		churc actu at fOINTS to churate motar ratio of 1:3	
		insoluble iron oxide for Fe folior fortilization	
Foliar application of		Spraying with Si NPs could be used as a ration to	New Pof 5
ronal application of		spraying with Sinters could be used as a fation to	

silicon nanoparticles	reduce the harmful effects of Pb stress on
(0 and 1.5 mM)	coriander plants. Si NPs can adjust antioxidant
	enzyme activities and minimize the oxidative
Plant: Coriander	stress in plants.
(Coriandrum sativum	Treatments included four levels of Pb (0, 500,
L.)	1000, and 1500 mg/kg of soil), and two levels of
	Si NPs (0 and 1.5 mM) in all combinations. The
	Pb treatments alone decreased the plant biomass
	and vitamin C while increased the flavonoid,
	MDA, antioxidant enzyme activities, and Pb
	concentration in tissues depending upon the Pb
	treatments. The foliar-applied 1.5 mM Si NPs
	alleviated the adverse impacts of Pb on coriander
	plants which were due to the minimization of Pb
	concentration in plants and improvements in the
	plant defense system. Si NPs minimized
	accumulation of MDA in plant tissues and
	adjusted the activities of POD, CAT, and SOD in
	plants under Pb stress. Overall, Si NP foliar
	application might be a suitable approach in
	reducing the Pb concentrations in plants)

New additional references for Table 1.

1. Z. N. Lafmejani, A. A. Jafari, P. Moradi, and A. L. Moghadam, Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). *Herba Polonica*, 2018, **64**(2), 13-24.

2. X. Cao, C. Wang, X. Luo, L. Yue, and B. Xing, Elemental sulfur nanoparticles enhance disease resistance in tomatoes. *ACS Nano*, 2021 **15**(7), 11817-11827.

3. J. Lian, L. Zhao, J. Wu, H. Xiong, Y. Bao, A. Zeb, J. Tang, W. Liu, Foliar spray of TiO₂ nanoparticles prevails over root application in reducing cd accumulation and mitigating cd-induced phytotoxicity in maize (*Zea mays* L.). *Chemosphere, 239*, 124794-124794.

4. D. Alidoust, A. Isoda, Effect of γFe_2O_3 nanoparticles on photosynthetic characteristic of soybean (*Glycine max* (L.) Merr.): foliar spray versus soil amendment. *Acta Physiologiae Plantarum*, 2013, **35**(12), 3365-3375.

5. H. Fatemi, B. E. Pour, M. Rizwan, Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (*Coriandrum sativum* L.) plants grown in lead (Pb)-spiked soil. *Environmental Science and Pollution Research*, 2021, **28**(2), 1417-1425.

	· · · · · · · · · · · · · · · · · · ·		
#	Statement [Paragraph]	Comments	Reply
	[reference number]		
1	"NPs [] can carry	Ref. 6 is not a study of how functional	In Ref.6, the authors mentioned "The
	various types of	groups increase the uptake of NPs,	successful application of NPs is due to
	functional groups that	but rather a study of how chitosan	its nanometer size enabling uptake into
	increase their cellular	NPs affect the growth of tomato	plant cells, their large surface area,
	uptake"	inoculated w/wo mycorrhiza. NP	cationic nature, active functional
	[Introduction] [ref. 6]	uptake is not studied at the cellular	groups, porosity and higher
		level as indicated.	encapsulation efficiency [8]."
2	" [] increased shelf	Ref. 13 evaluated the effect of foliar	The correct citation should be Ref. 9. We
	life of agricultural	application of PbO-NPs on Pb	sincerely apologize for the oversight.
	produce" [Introduction]	accumulation by spinach and	
	[ref. 13]	associated biochemical changes and	
		health hazards. There is no data	
		presented which deals with the	
		impacts of NPs on shelf life as listed	
		in the sentence where the reference	
		appears.	
3	" [] improved	Ref. 14 is a poor choice to show that	In Ref. 14, the authors mentioned "These
	absorption and	an essential plant nutrient (here Zn) is	facts indicate that Zn availability and
	assimilation of foliar	absorbed and assimilated in higher	concentration by foliar fertilization with
	fertilizer"[Introduction]	quantities when applied as NPs. No	ZnO NPs during the main stages of
	[ref. 14]	elemental analysis of Zn in tissue was	vegetative growth were more effective
		performed in this study which is	and have important physiological
		pivotal to support the claim.	functions that could improve fruit
		Vegetative biomass was significantly	quality." "Results from this research
		improved by NPs but differences in	suggest that foliar application of ZnO
		height and fruit yields are the same.	NPs at 1000 mg L 1 had a greater impact
		Several papers exist where e.g. the Zn	on plant growth and physiology than
		enrichment is analyzed for Zn applied	conventional Zn (ZnSO4) salts,
		as NP and as a simple salt and we	probably due to greater capacity to be
		wonder why some of these better	absorbed by the blade."
		suited studies have been omitted (e.g.	The reference Read et al. (2020)
		Read et al. 2020).	Physiologia Plantarum 170: 384-397
		Read et al. (2020) Physiologia	was published when the manuscript had
		Plantarum 170: 384-397	already been submitted for review.
4	Plants absorb foliar	This sentence is more or less directly	There are more information published
	NPs usually through	taken from the review ref. 9 NPs can	about this part except Ref. 9. For
	stomata, cracks or	enter plant cells and deliver nutrients	example Ref. 21 "Furthermore, it is
	water pores, ion	by binding to carrier proteins, through	also reported that, nanoparticles have
	channels, protein	aquaporins, ion channels, endocytosis	the ability to enter different plant
	carriers, endocytosis,	or by binding to organic chemicals in	tissues through either root tissues (via
	stigma, wounds and	plant tissues which is referring to	soil application) or aboveground

Table S2. Reply to queries in the comments to Hong et al. (2021).

Introduction] [refs. 9, 21-24]another review by Rico et al. 2011. In this review several of these pathways are proposed, but no papers with experiments data are listed as reference to support the proposal, which is misleading as it should be ended that e.g. aquaporins and ion channels not yet have been experimentally shown to be pathways for NP uptake.organs (via foliar application) including trichomes, stomata, cuticles and stigma, as well as through wounds and root junctions (Nukla et al. 2017; Trigathi et al. 2017; Zuverza-Mena et al. 2017). In general, when different manoparticles could be applied on plant leaf surfaces, they can enter through the stomata porcs (openings) or through trichome bases moving towards various plant tissues (Hatami et al. 2016)."Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz, and Herth, 2011; Aken Van, 2015)"8.the effect of NPs is complex and affected by many factors, such affects, and affects and factors. with NPs. There is no reference oprised in carlier studies as to how NPs enter the plants. Those studies as to how NPs enter the plant filt and studies as to how NPs enter the plants. Those studies as to how NPs enter the plants. Those studies as to how NPs enter the plants. Those studies as to how NPs enter the plant filt. They forthalt filt was understoal about NP-plant intercaction empress and inficted microaganisms on the foliage.9the effect of NPs is (] rhizosphere and foliage				
[Introduction] [rcfs. 9, 21-24]this review several of these pathways are proposed, but no papers with experiments data are listed as neference to support the proposal, which is misleading as it should be noted that e.g. aquaporins and ion channels not yet have been experimentally shown to be pathways for NP uptake.interview several table to the store and several several table to the store and several several to the store and portion bases moving towards various plant tissues (Hatami et al. 2017; Waretza-Mena et al. 2017) In general, when different nanoparticles could be applied on plant leaf surfaces, they can enter through the stormat pores (openings) or through trichomes Asses moving towards various plant tissues (Hatami et al. 2016)."Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of prores and bydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015),"Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves.""Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the euticel ayer, and possibly through stomata as well"5the effect of NPs is (my factors, such as [] rhizosphere and foltage microorganisms on the foliage.Ref. 29 is irrelevant as it is not dealing write NPs. There is no reference to effects on the interaction between NPs, mizosphere and foliage microorganisms on the foliage.Ref. 29 is irrelevant as it is not dealing write NPs. There is no reference to effects on the interaction between NPs, mizosphere and foliage microorganisms on the foliage.5the effect of NPs is (Ref. 29 is irrelevant as it is not dealing to microorganisms		trichomes	another review by Rico et al. 2011. In	organs (via foliar application)
 21-24] are proposed, but no papers with experiments data are listed as reference to support the proposal, which is misleading as it should be noted that e.g. aquaporins and ion channels not yet have been caperimentally shown to be pathways for NP uptake. AutNay Nedecky et al. 2017; Zuverza-Mena et al. 2010, In general, when different nanoparticles could be applied on plant leaf surfaces, they can enter through the stomata pores (openings) or through trichome bases moving towards various plant tissues (Hatami et al. 2016)." Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of mutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves." Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well?" Ref. 24 "Studies indicate that plants can absorb metal(loid) via stomata, are well?" Ref. 24 "Studies indicate that plants can absorb metal(loid) via stomata, are well?" Ref. 24 "Studies indicate that plants can absorb metal(loid) via stomata, are well?" Ref. 24 "Studies indicate that plant microbind, are an integral part of plant life" and foliage microorganisms on the foliage. Thir code for incrobiot at plant microbiad, are an integral part of plant life? and foliage microorganisms on the foliage. 		[Introduction] [refs. 9,	this review several of these pathways	including trichomes, stomata, cuticles
 experiments data are listed as reference to support the proposal, which is misleading as it should be noted that e.g. aquaporins and ion channels not yet have been experimentally shown to be pathways for NP uptake. and root junctions (Shukla et al. 2017, Tripathi anaoparticles could be applied on plant experimentally shown to be pathways for NP uptake. Ref. 22 "It is well fkown that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 22 "It is well fkown that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake for nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 24 "Studies indicate that uptake of PVP-coated AuNPs occurs at least party via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid) via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rice ct al. 2011 only discussed what was proposed in carlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. The effect of NPs, is microgramism on the foliage. 		21-24]	are proposed, but no papers with	and stigma, as well as through wounds
 reference to support the proposal, which is misleading as it should be noted that e.g. aquaporins and ion channels not yet have been experimentally shown to be pathways for NP uptake. Ruttkay Nedecky et al. 2017; Tripathi et al. 2017; Liverza-Mena et a			experiments data are listed as	and root junctions (Shukla et al. 2016;
 which is misleading as it should be noted that e.g. aquaporins and ion channels not yet have been experimentally shown to be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it should be pathways for NP uptake. which is misleading as it is not deally as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015),, "Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entremotion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et 2013)" Rice of NPs is complex and affected is [] thizosphere and foliage microorganisms in microorganisms on the foliage. Thereoduction light growthen well with NPs. There is no reference to frects on the interaction between the share			reference to support the proposal,	Ruttkay Nedecky et al. 2017; Tripathi
 In general, when different nanoparticles could be applied on plant leaf surfaces, they can enter through the stomata pores (openings) or through trichome bases moving to wards various plant tissues (Hatami et al. 2016)." Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake of antimeters in the apoplastic stream resulting in reduced uptake of and therth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance the leaves." "Your presults indicate that uptake of PVP-coated AuNPs occurs at local potential routes of entrance indicate that uptake of PVP-coated AuNPs occurs at local symptom stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticela leaver, and possibly through stomata as well" Ref. 29 is irrelevant as it is not dealing with NPs. There is no reference to flogen and affected by many factors, such as [] rhizosphere and follage microorganisms interoorganisms on the foliage. 			which is misleading as it should be	et al. 2017; Zuverza-Mena et al. 2017).
 channels not yet have been experimentally shown to be pathways for NP uptake. ranoparticles could be applied on plant leaf surfaces, they can enter through the stomata pores (openings) or through trichome bases moving towards various plant tissues (Hatami et al. 2016)." Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apollastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 24 "Stomatal and cuticular uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aquecous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so liftle was understood about NP-plant interaction. the effect of NPs is [] rhizosphere and foliage microorganisms on the foliage. 			noted that e.g. aquaporins and ion	In general, when different
 cxperimentally shown to be pathways for NP uptake. leaf surfaces, they can enter through the stomata pores (openings) or through trichome bases moving towards various plant tissues (Hatami et al. 2016)." Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves.""Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well? Ref. 24 "Studies indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well? Ref. 24 "Studies indicate that plants. Can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is with NPs. There is no reference an integral part of plant life" and "The role of microbita in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs 			channels not vet have been	nanoparticles could be applied on plant
 for NP uptake. for NP uptake. the stomata pores (openings) or through trichome bases moving towards various plant tissues (Hatami et al. 2016)." Ref. 22 "It is well known that the common symptoms of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dicta and Herth, 2011); Aken Van, 2015)" Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves.""Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs ener the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected with NPs. There is no reference and interaction. the effects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. 			experimentally shown to be pathways	leaf surfaces, they can enter through
 In the optimized of the opt			for NP uptake.	the stomata pores (openings) or
 the effect of NPs is complex and affected by many factors, such as [] thizosphere and foliage microorganisms on the foliage. the effect of NPs is [] thizosphere and foliage microorganisms on the foliage. 				through trichome bases moving
 the effect of NPs is complex and affected by many factors, such as [] thizosphere and foliage microorganisms on the foliage. Ref. 29 is irrelevant as it is not dealing microorganisms on the foliage. 				towards various plant tissues (Hatami
 5 the effect of NPs is complex and affected by many factors, such as [] thizosphere and foliage microorganisms on the foliage. 7 the effect of NPs is [] thizosphere and foliage microorganisms on the foliage. 				et al. 2016)."
 Kei. 22 Th Sweht Norw that the common symptons of NPs phytotoxicity appear as the clogging of pores and barriers in the apoplastic stream resulting in reduced uptake of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)," Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves."*Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. 				Pof 22 "It is well known that the
 by the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. communication of the provided and the provided and the provention of the provided and the provention of the provided and the provided and				common symptoms of NPs
 5 the effect of NPs is complex and affected by many factors, such a [] rhizosphere and affected by many factors, such a [] rhizosphere and microorganisms on the foliage. 7 the effect of NPs is [] rhizosphere and microorganisms on the foliage. 				common symptoms of NFS
 the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. the effect of NPs is [] rhizosphere and [] rhizosphere [] r				phytotoxicity appear as the clogging of
 Stream resulting in reduced update of nutrients and hydraulic transfer (Dietz and Herth, 2011; Aken Van, 2015)," Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves."*Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rice effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. Ref. 29 is irrelevant as it is not dealing microorganisms on the foliage. 				stream resulting in reduced untelys of
 5 the effect of NPs is complex and affected by many factors, such a field effects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. 5 the effect of NPs is complex and affected by many factors, such a field effects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. 6 the effect of NPs is complex and affected by many factors, such a field effects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. 				stream resulting in reduced uptake of
 and Herth, 2011; Aken Van, 2015),' Ref. 23 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves,""Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such effects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs 				nutrients and nydraulic transfer (Dietz
 Kef. 25 "Stomatal and cuticular uptake pathways are two potential routes of entrance into the leaves.""Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. Throduction [ref. 29] 				and Herth, 2011; Aken Van, 2015),"
 by pathways are two potential routes of entrance into the leaves.""Our results indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. Introduction [ref. 29] 				Ref. 23 "Stomatal and cuticular uptake
 the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms on the foliage. the effect of NPs is [] rhizosphere and foliage microorganisms on the foliage. 				pathways are two potential routes of
 indicate that uptake of PVP-coated AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms introduction] [ref. 29] Ref. 29 				entrance into the leaves.""Our results
 AuNPs occurs at least partly via disruption and/or diffusion through the cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms incroorganisms on the foliage. Introduction] [ref. 29] 				indicate that uptake of PVP-coated
 disruption and/or diffusion through the cuticle layer, and possibly through stomata as well? Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms [Introduction] [ref. 29] Ref. 29 is irrelevant as it is not dealing microorganisms on the foliage. 				AuNPs occurs at least partly via
 cuticle layer, and possibly through stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms [Introduction] [ref. 29] 				disruption and/or diffusion through the
 stomata as well" Ref. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms [Introduction] [ref. 29] Ref. 29 is irrelevant as it is not dealing microorganisms on the foliage. 				cuticle layer, and possibly through
 kef. 24 "Studies indicate that plants can absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms [Introduction] [ref. 29] Ref. 29 is irrelevant as it foliage. 				stomata as well"
 by many factors, such as filters and affected by many factors, such as filters, such as it is not dealing so many factors, such as filters as it is not dealing so many factors, such affects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. absorb metal(loid)s via stomata, lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is Ref. 29 is irrelevant as it is not dealing complex and affected with NPs. There is no reference to by many factors, such affects on the interaction between as [] rhizosphere and foliage microorganisms on the foliage. 				Ref. 24 "Studies indicate that plants can
 I lenticels, cuticle, cracks, and aqueous pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms incroorganisms on the foliage. [Introduction] [ref. 29] 				absorb metal(loid)s via stomata,
 by many factors, such as [] rhizosphere and foliage microorganisms [Introduction] [ref. 29] pores (Schreck et. 2013)" Rico et al. 2011 only discussed what was proposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction. Ref. 29 is irrelevant as it is not dealing effects on the interaction between as [] rhizosphere and foliage. 				lenticels, cuticle, cracks, and aqueous
kRef. 29 is irrelevant as it is not dealing by many factors, such as [] rhizosphere and foliage microorganismsRef. 29 is irrelevant as it is not dealing interaction between interaction between interactionRef. 29 mentioned that "plant microbiota, are an integral part of plant life" and "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs				pores (Schreck et. 2013)"
bproposed in earlier studies as to how NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction.5the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganismsRef. 29 is irrelevant as it is not dealing with NPs. There is no reference to effects on the interaction between as [] rhizosphere and foliage microorganismsRef. 29 mentioned that "plant microbiota, are an integral part of plant life" and "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs				Rico et al. 2011 only discussed what was
NPs enter the plants. Those studies were published much early on when so little was understood about NP-plant interaction.5the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganismsRef. 29 is irrelevant as it is not dealing with NPs. There is no reference to effects on the interaction between as [] rhizosphere and foliage microorganismsRef. 29 mentioned that "plant microbiota, are an integral part of plant life" and "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs				proposed in earlier studies as to how
Image: Second				NPs enter the plants. Those studies
5 the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms Ref. 29 is irrelevant as it is not dealing interaction between foliage. Ref. 29 mentioned that "plant microbiota, are an integral part of plant life" and "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs				were published much early on when so
Image: 1interaction5the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganismsRef. 29 is irrelevant as it is not dealing with NPs. There is no reference to interaction between are an integral part of plant life" and "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs				little was understood about NP-plant
5 the effect of NPs is complex and affected by many factors, such as [] rhizosphere and foliage microorganisms microorganisms on the foliage. [Introduction] [ref. 29] Ref. 29 is irrelevant as it is not dealing with NPs. There is no reference to effects on the interaction between the interaction between as [] rhizosphere and microorganisms on the foliage. [Introduction] [ref. 29]				interaction.
complex and affected by many factors, such as [] rhizosphere and foliage microorganismswith NPs. There is no reference to effects on the interaction between microorganisms on the foliage.are an integral part of plant life" and "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs	5	the effect of NPs is	Ref. 29 is irrelevant as it is not dealing	Ref. 29 mentioned that "plant microbiota.
by many factors, such as [] rhizosphere and foliage microorganisms [Introduction] [ref. 29] by many factors, such microorganisms on the interaction between microorganisms on the foliage. (Introduction] [ref. 29] by many factors prime prime the man "The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known." Thus, it is possible that NPs		complex and affected	with NPs. There is no reference to	are an integral part of plant life" and
as [] rhizosphere and foliage microorganismsNPs, microorganisms on the foliage.rhizosphere and microorganisms on the foliage.rhizosphere and against various stresses is well known." Thus, it is possible that NPs		by many factors, such	effects on the interaction between	"The role of microbiota in plant growth
foliage microorganisms microorganisms on the foliage. against various stresses is well [Introduction] [ref. 29] known." Thus, it is possible that NPs		as [] rhizosphere and	NPs. rhizosphere and	promotion (PGP) and protection
[Introduction] [ref. 29] [Introduction] [ref.		foliage microorganisms	microorganisms on the foliage	against various stresses is well
		[Introduction] [ref. 29]		known." Thus, it is possible that NPs

			adsorption on plants surface or absorption into plants tissues, and their positive or negative effects on plants, could be affected by microbes' activities.
6	Spraying the proper amount of micro/macronutrients on foliage can mitigate damage caused by traditional soil root application methods [par 2] [ref. 21]	In ref. 21 it is correctly stated that foliar fertilization is generally recommended for supplying additional nutrients like nitrogen (N), magnesium (Mg) and micronutrients as well as P, K and sulphur (S) to improve plant nutritional status as well as increase the crop yield and its quality. But in the ref. 21 nothing is mentioned about mitigating damaging effects caused by traditional soil application methods such as over-fertilization.	 In Ref. 21, the authors mentioned "the more soluble nutrients such as nitrogen (N) are easily leached down the soil profile. What is lost through leaching reaches the aquifer and pollutes the groundwater (El-Ramady 2014; El-Ramady et al. 2014a, b, 2015, 2016a)." In addition, there was a statement that mentioned "The most important use of foliar nutrition is the application of micronutrients in small amounts as well as macronutrients (e.g., nitrogen, phosphorus, or potassium) without causing any phytotoxicity (Oosterhuis and Weir 2010)." Avellan et al. (ES&T 2021, 55, 13417-13431) also discussed this concern: "Yet, current use of agrochemicals is highly inefficient. It has been estimated that up to 50%⁶ of the nutrients and >95% of pesticides⁷ that are applied on crops never reach their target and are wasted, causing soil pollution,⁸ antibiotic resistance,⁹ and runoff that degrades the ecosystems.¹⁰"
7	[] carbon-based NPs can be used as coatings for slow-release nanofertilizers to improve plant biomass in agriculture [par 2.1] [ref. 46]	The use of ref. 46 is misleading as it is not documented that NPs were produced (diameter less than 100 nm) and particles were not applied as foliar fertilizers but applied to soil in a greenhouse set-up.	Ref. 46 mentioned "The resulting fertilizers produced by incorporate NPK into the nanoparticles presents put with an apparatus described previously by EL-Aila <i>et al.</i> (2001) to produce slow- release fertilizers with nanoparticles." So, the particles used in the Ref. 46 were nano-size. Section 2.1 discussed types of nanoparticles, and it should not matter whether these NPs were applied to leaves or roots.
8	[]and organic NPs can serve as nanocarriers of	The use of ref. 48 is misleading as they evaluated the potential of SiNPs	In Hong et al. (2021), this sentence was supported by Ref. 47 and Ref. 48. Iron

	nutrient elements (e.g., iron and magnesium) to treat acute malnutrition in crops [par 2.1] [ref. 48]	for delivering proteins in tomato to control insect pests. There is no focus on NP as nanocarriers for nutrient elements as listed in the sentence where the reference is used.	and magnesium were mentioned in Ref. 47. In Ref. 48, the authors mentioned "Nanoparticle based formulations have been effective in delivering growth factors –naphthalene acetic acid; chemical pesticides – cyhalothrin, avermectin; biopesticides – microbial extracts, essential oils; essential compounds – nitric oxide, zinc DNA and siRNA to plants." These essential compounds were not listed in the review but they were supposed to be part of nutrient elements.
9	Chitosan NPs also adsorb easily on leaves so that it can be used as a coating for slow- release fertilizers and pesticides. [par 2] [ref. 55]	This paper is not dealing with foliar application of chitosan coated NPs for fertilizer delivery. In the introduction section it is stated that chitosan NPs easily gets adsorbed by plant surfaces, and that nanoencapsulation is used for the controlled release of micronutrients (which is true) but none of the references listed in ref. 55 have this as an experimental focus point. The listed references deal with herbicides, hormones and parasitic control.	 Ref. 55 has several statements supporting this opinion. "CSNPs are one of the best nano-carriers (Pereira et al., 2017), which can accomplish the slow-and-steady release of target compounds and thus increases their bioavailability." "Chitosan in the form of NPs gets easily adsorbed to plant surfaces (e.g. leaf and stems) and helps in prolonged contact time between agrochemicals and the target surface. Chitosan nanoparticles (CSNPs) were effectively used in the delivery of insulin (Fernández-Urrusuno, Calvo, Remuñán-López, Vila-Jato, & Alonso, 1999). While, chitosan/tripolyphosphate NPs have been used for sustained release of agrochemicals and phytohormones (Grillo, Pereira et al., 2014; Pereira, Silva, Oliveira, Oliveira, & Fraceto, 2017)." "Previously CSNPs have demonstrated improved molecular bioavailability of active ingredients by penetrating through the cell membrane to provide enhanced absorption (Nagpal, Singh, & Mishra, 2010)."
10	Its structure is also	This paper is a poor choice as	This statement is not only based on Ref.
	suitable for	reference for this statement. In ref. 56	56, but also from the authors' summary
	encapsulating metal	chitosan complexed Zn carriers for	of previous studies "Chitosan shows

	ions; chitosan NPs have been shown to increase the antibacterial efficacy of metal ions. [par. 2] [ref. 56]	foliar application of durum wheat (NP size >200 nm) were produced. The study found that foliar application of chitosan complexed Zn to plants grown in soil increased the Zn content of leaves, but no comparison to simple Zn salts (e.g. ZnSO4) of similar concentration were used and consequently the potential role of chitosan cannot be evaluated which is a major shortcoming of the paper (see also comments on this work in review by Kopittke et al. (2019))	surface adherence (Zeng & Luo, 2012) and exhibits antibacterial properties. In addition, thiolated derivatives of chitosan showed enhanced antibacterial activity than pristine chitosan (Croce, Conti, Maake, & Patzke, 2016). Similarly, loading of metal ions on chitosan nanoparticles lead to increased antibacterial action (Du, Niu, Xu, Xu, & Fan, 2009)."
11	Due to rainfall and adsorption on soil complexes, the utilization rate of soil- applied fertilizers by plants is low, resulting in increased application of chemical fertilizers which leads to eutrophication. [par 2.2] [ref. 62]	This paper is not dealing with eutrophication caused by soil applied fertilizers, but is a study focusing on NP uptake in water melon. The reference lists eutrophication as a challenge in soil fertilization in the introduction section of the paper, but obviously should not be used as a relevant reference in a scientific paper as it is not the topic. Several quality studies on this important topic have been produced in well reputed journals and it is striking that none of these are cited.	Ref. 62 mentioned "Chemical fertilizer uptake efficiency in plants is low due to fixation of nutrients with other soil composites or run off due to precipitation leading to a growing anthropogenic eutrophication issue."
12	Compared with traditional soil applied fertilizers, foliar applied nanofertilizers have the advantages of being quickly absorbed by plants, being more cost-effective, and minimally impacting soil health [par 2.2] [ref. 64]	This paper contains no data to support the statement that foliar applied NPs are taken up more quickly, more cost- effective and with minimal impact on soil relative to traditional soil-applied fertilizers. The paper shows that B containing NPs relative to a conventional B salt leads to the same B concentration in the shoot tissue, but a significantly higher biomass was obtained when B containing NPs are applied.	Ref. 64 summarized this information from other studies "The advantage of using nano-fertilizers is that application can be performed in smaller amounts than regular fertilizers, whose efficiency is about 30-50% (Fageria et al., 2009). Therefore, nano-fertilizers may be more efficient, decreasing soil pollution and other environmental risks that may occur when using regular chemical fertilizers and/or conventional foliar sprays (Liu and Lal, 2015)."
13	Researchers have shown that slow-release nanofertilizers enhanced plant uptake	This is a study of foliar application of sulfur containing NPs on tomato. There is no experimental data on N, P and K in the paper and certainly no	The authors of Ref. 65 mentioned that potassium and nitrogen were increased under SNPs treatment: "Foliar sprayed with SNPs was found acting on

	of nitrogen,	support for the statement that slow	increasing the potassium content in
	phosphorus, and	release nanofertilizers enhance the	fruits of tomato compared with
	potassium [par. 2.2]	uptake of these plant nutrients.	control." and "These observations is a
	[ref. 65]		result of interaction of SNPs absorbed
			by leaves with organic compounds of
			tomato tissues forming organic sulfur
			compounds, which help in building the
			chlorophyll and nitrogen content of the
			leaves." It was a mistake to include
			phosphorous.
14	[] the vacuole and cell	Ref. 75 does not show NP	Ref. 75 does not show NP accumulation
	wall serve as the main	accumulation into cell vacuoles.	into cell vacuoles but it shows
	accumulation sites of	Also, ref. 74 only discusses vacuole	accumulation in cell wall, which
	NPs. [par. 3][refs. 74	sequestration of heavy metal ions (not	supports the statement.
	and 75]	NPs) through specific ion	In Ref. 75, the authors mentioned that NP
	-	transporters. The only example	could accumulate in cell walls. "Indeed,
		provided in ref. 74 refers to Kachenko	Lan et al. (2019) found that more than
		et al. (2010), a study about AsIII	90% of the internalized Cd was located
		vacuole sequestration in As	in the cell wall, which explained why
		hyperaccumulating fern	Microsorum pteropus is a Cd
		Pitvrogramma calomelanos.	hyperaccumulator (Lan et al., 2019).
		Therefore, the references chosen	Similar results were also found in
		provide no evidence of NP	Canna indica L., as the majority of
		accumulation in vacuoles.	internalized Cd was blocked by the cell
		Kachenko et al. (2010) Environ. Sci.	walls, and this Cd proportion increased
		Technol. 44 (12), 4735-4740	with increasing Cd exposure levels
			(Dong et al., 2019)."
			Ref. 74 is a review about heavy metals.
			and the authors mentioned many times
			about metal nanoparticles (nano-size
			heavy metals) The statement was based
			on their general comment "These
			mechanisms include reduced metal
			untake and transport induction of
			specific heavy metal transporters
			limiting accumulation in sensitive
			tissue or sequestration in tolerant
			organs(vacualas) "
15	For example the outicle	Paf 85 is a critical raviant from 1006	Def 85 mentioned that "The outist
1.5	contains a large amount	which only studies foliar uptake of	contains large fractions of pacting
	of nectin which	inorganic ions NPs are nover	which have properties of swelling and
	promotes ND	morganic ions. IN 5 are nevel	shrinking with the absorption or loss of
	promotes INF		water and therefore are likely to
	$\begin{array}{c} performation. [par.] \\ 3 1][ref 95] \end{array}$		facilitate the normachility "
1			admiate the permeability.

			This part of the review discusses cuticle composition and the cuticle permeability which is suitable for NPs absorption in leaves.
16	Once inside the leaves, NPs could accumulate in the vacuole to slow down absorption and transfer in plants. [par. 3.1][refs. 74 and 89]	Vacuoles are never mentioned in ref. 89. Also, as explained above, ref. 74 only discusses vacuole sequestration of heavy metal ions (not NPs) through specific ion transporters. Therefore, the references chosen provide no evidence of NP accumulation in vacuoles.	This comment has been addressed in query #14. It is a mistake to include Ref. 89 here.
17	Lastly, the Casparian strip serves as the ultimate barrier that could hinder the penetration of NPs into the xylem. [par. 3.1][ref. 36	From ref. 36: Sun et al. (2014) used fluorescently labeled mesoporous silica NPs to visualize SiNP transport in plants and reported on the important role of the Casparian strip in minimizing NP penetration into the xylem vessels. The statement above refers to NPs applied to plant roots (and not to leaves), as clearly stated in the abstract of Sun et al. (2014). Hong et al. may have misunderstood this statement, as the Casparian strip is not present in leaves of higher plants (with rare exceptions, of little or no relevance to modern agriculture). The plant species tested in Sun et al. (2014) are lupin, wheat and maize, which do not possess a Casparian strip in leaves.	There is a reference (Lersten, N.R. Occurrence of endodermis with a casparian strip in stem and leaf. <i>Bot.</i> <i>Rev</i> 63, 265–272 (1997).) that discussed about Casparian strip occurring in plant stem and leaf. It is unfortunate that there was a mistake in the citation.
18	A report showed that light (which affects photosynthetic efficiency) and root temperature influence leaf surface absorption of NPs. [par. 3.1][ref. 85]	As explained above, ref. 85 is a critical review from 1986 which only studies foliar uptake of inorganic ions. NPs are never mentioned in the text.	As mentioned in Ref. 85: "Light, temperature, and relative humidity affect the leaf growth and the cuticular development", factors that could probably affect absorption of NPs.
19	Studies have shown that negatively charged particles may be transported through vascular tissues, while	This sentence contains a number of statements based on the work from several studies. In our opinion, it would be easier for the reader if Hong et al. cited the original works. In this	This statement was based on many studies that had been summarized by the authors from Ref. 72. It was an oversight not to clarify that statement was a summary from the cited reference

	positively charged particles may cross the cell membrane by endocytosis. Studies also showed that negative charge is more favorable for transport, while positive or neutral charge is more favorable for accumulation on the plant vascular system and therefore not transported. [par. 3.1][ref. 72]	particular instance, finding the original sources is quite difficult and time demanding. To give an example, we could not find in ref. 72 any sentence about positively-charged NPs crossing cell membranes by endocytosis.	(i.e., Ref 72).
20	"A report showed that surface coating material prevents blocking of stomata by reducing the excessive accumulation of NPs, thus increasing the probability of NPs being absorbed in the leaves. [par. 3.1][ref. 97]	We could not find this information in ref. 97.	In Ref. 97, the authors mentioned "PVP coatings have been demonstrated to prevent NP aggregation through steric hindrance effects". And "Once NPs enter plants, steric repulsive interactions between NPs and conducting tube surfaces are predicted to facilitate NP transport throughout the plant. Compared to PVP and Ct, GA was highly effective in inhibiting the aggregation of NPs in synthetic sap and enhancing the mobility of NPs in trees."
21	For example, hydroxyapatite can be applied to modify the NPs' surface to reduce their aggregation and increase leaf absorption. [par. 3.1][ref. 95]	Ref. 95 is about Zn NPs in plants, hydroxyapatite is never mentioned here.	This is a mistake. It should be humic acid, not hydroxyapatite.
22	Leaf pores have a diameter of about 100 nm but waxy hydrophobic stomata have a smaller pore size, which can block large particles [par. 3.2][ref. 72]	This sentence does not reflect what is stated in ref. 72 par. 2.1, namely: This waxy hydrophobic cuticle has very small pores (<5.0 nm),40 which prevent the uptake of all but the smallest nanomaterials.41 In addition to these nanopores, plant leaves have larger pores, known as stomata	This statement should have been leaf pores having a diameter of about 10 μm or more but waxy hydrophobic cuticle has a smaller pore size, which can block large particles. It was another mistake.

23	Large particles (50 200 nm) are mainly transported through the apoplast, while small particles (10 50 nm) are transported mostly via the symplast. [par. 3.2][ref. 58]	(which can occupy up to 5% of the total leaf surface area) that are used to regulate water and gas exchange with the environment; these stomata have sizes that run in the 10's of microns. This is a very confident statement, which doesn't fully address the current disagreements and uncertainties on NP size exclusion limits in plant biology. Furthermore, ref. 58 (review article) has taken these numbers (e.g. 50-200 nm) from another article (Raliya et al. (2016)), which in turn cites another review (Schwab et al. (2014)), which does not report these exact numbers, and further states: The available literature provides no definite answer whether NPs prefer transport through the apophest or sumplest. However, to	In Ref. 58, the authors mentioned "Transport of NPs (between 10 and 50 nm) is favored through the symplastic route (through the cytoplasm of adjacent cells) whereas translocation of larger NPs (between 50 and 200 nm) occurs via the apoplast (in between the cells)." They made this statement based on four other references not only from Raliya et al. (2016). NPs have been found both inside and outside the cell suggesting both their apoplastic and symplastic movement inside plants.
		apoplast or symplast. However, to date, most data support transport through the apoplast.	
24	It is noteworthy that foliar spray of NPs improved elemental contents in plants: ZnO NPs enhanced P and zinc uptake in tomato,18,100 () [par. 4.1.1] [refs. 18 and 100]	Ref. 18 is a study examining the effects of foliar application of ZnO NPs to tomato plants in relation to reducing negative effects of cadmium toxicity but there is no elemental analysis of nutrient accumulation or uptake or any other form of documentation of improved P or Zn uptake because of foliar NP application. In addition, the study had no control treatment with foliar application of a conventional zinc fertilizer in combination with cadmium or a control with soil-applied ZnO NPs. Ref. 100 is a study of foliar vs. soil application in the leaves of the foliar treatment compared to soil application. However, soil application.	Regrettably, this is an example mistakenly included in the wrong list.

		application enhanced Zn accumulation in the shoot compared to foliar application and overall the effects on plant growth and quality from the different treatments was varying. Furthermore, there is no documentation of P uptake. With reference to another study that found increased phytase and phosphatase activity after ZnO NP application, the authors in ref. 100 hypothesize that the ZnO NPs could increase P availability, but there is no evidence to support this in the study.	
25	In the same manner, foliar SiO2 NPs (spherical particles, 97.8 2.8 nm) significantly () reduced Cd toxicity in rice,58 () prolonged the storage time of grains and fruits,88 reduced disease rate in harvested crops and improved the quality of fruits.108 [par. 4.1.2] [refs. 58, 88, 108]	Ref. 58 is a review, which contains a reference to a study where application of SiO2 NPs has been found to alleviate Cd toxicity in rice however, the SiO2 NPs used in the study are approximately 60 nm and thus not the same size as written in the Hong et al. (2021) paper. Ref. 88 is a study of foliar applied Cu NPs to tomatoes and does not use or discuss the application of SiO2 NPs. Ref. 108 is a study about application of Mn3O4 nanozymes to cucumbers and is not related to SiO2 NPs.	This statement is supposed to be the effects of different foliar NPs, but information got deleted during review and revisions.
26	The potential hazards of food safety should be taken seriously especially since there are reports showing that NPs could induce cancer and genotoxicity in human cells.79 [par. 4.1.2] [ref. 79] Foliar application of high concentrations of metal NPs to vegetables	Ref. 79 is a study that examines the toxicity of micro-sized metal-rich particles in cabbage plants, and therefore cannot be used as a report on the effect of nanoparticles in relation to genotoxicity or cancer in human cells, or for the effects of NPs on gene expression in vegetables, since it does not involve nano-sized particles.	Ref. 79 used CuO particle with size <50 nm as given in the supporting information.

	has significant effects		
	on gene expression79		
	[par. 4.1.2] [ref. 79]		
27	Although humans may	Ref. 63 is a review on the latest (from	Ref. 63 discussed foliar nanofertilizer and
	naturally digest and excrete NPs,81 their accumulation in the human body and their toxic side effects cannot be ignored.63 [par. 4.1.2] [ref. 63]	2016) R&D in foliar nanofertilizers, and the topic is not bioaccumulation or toxicity to humans. Toxicity as a topic is limited to this sentence about ecotoxicity: In-depth and long-term field trials are required globally to observe the practical environmental behaviour and ecotoxicity of nanoparticles.	they proposed that evaluation system including ecotoxicity is an important part of future perspectives.
28	Foliar NPs may cause	Ref. 103 is a study of the potential of	This statement is supposed to mean that
	unknown toxicity	β -D-glucan nanoparticles (a	NPs used as foliar fertilizer may cause
	which limits their use in	biopolymer) for protection of	unknown toxicity.
	$\begin{bmatrix} nar & 4 & 2 \end{bmatrix} \begin{bmatrix} refs & 103 \end{bmatrix}$	disease by increasing the activity of	benefits to the plants the statement
	123]	the plant s own defense mechanisms.	from Ref. 103 ("But the possible
]	This reference is in the section about	environmental toxicity due to
		Adverse effects of foliar NPs on	unpredicted nature of metal
		plants but it does not relate to toxicity	nanoparticles has raised serious
		of foliar NPs (neither towards	questions of their application in crops.")
		humans, crops or the environment)	supports the opinion in the review.
		rather it finds that the NPs used in the	In Ref. 123, the authors pointed out that
		study was beneficial to the plants.	silver NPs cause health and
		The only mentioning of toxicity of	environmental concerns in the abstract.
		NPs and how that might affect its use	In addition, they discussed may times
		in agriculture is as part of the	environment
		instification for their use of a	"There are various literatures that suggest
		biopolymer: The possible	that the nanoparticles can cause various
		environmental toxicity due to	environmental and health problems.
		unpredicted nature of metal	though there is a need for more studies
		nanoparticles has raised serious	to be conducted to conclude that there is
		questions of their application in	a real problem with silver
		crops. Therefore, the selection of	nanoparticles."
		nanomaterial for application in field	"also looks at the chances of these
		may be critical as materials which are	particles to induce toxicity in humans
		non-toxic, biocompatible and	and the environment as a whole."
		biodegradable are desirable.	"which may pose potential
		Ref 123 is a review of production and	"However, there are studies and reports
		application of silver papaparticles in	that suggest that paposilver can
		application of silver hanoparticles in	mai suggest mat nanosniver can

		medicine. It mentions that there are a few studies of silver NPs toxicity and that Nanosilver with its antimicrobial activity can hinder the growth of many friendly bacteria in the soil. By showing toxic effects on denitrifying bacteria, silver can disrupt the denitrification process, which involves the conversion of nitrates into nitrogen gas which is essential for the plants. However, they also write: Though these studies tend to suggest that nanosilver can induce toxicity to living beings, it has to be understood that the studies on nanosilver toxicity were done in in vitro conditions which are drastically different from in vivo conditions and at quite high concentrations of nanosilver particles. Hence, it is imperative that more studies be carried out to assess the toxicity effect nanosilver has in vivo before a conclusion on its toxicity is reached.	allegedly cause adverse effects on humans as well as the environment." "Nanosilver with its antimicrobial activity can hinder the growth of many 'friendly' bacteria in the soil."
		unsuitable reference to support the statement that the use of foliar NPs in agriculture is limited by their unknown toxic offects	
29	Copper deficiency can cause young leaf dysplasia, but excessive use can cause toxicity to plants.37 [par. 4.2] [ref. 37]	Ref. 37 is a study of biosynthesized silver and copper NPs as foliar biological control of bird's eye spot disease in tea plants. The study does not mention or investigate the adverse effects of high doses of NPs on plants, and the only mention of Cu toxicity is this: Cu deficiency may become more prevalent in coming future, increased use of nitrogenous fertilisers will lead to severity of Cu deficiency. However, higher concentration than optimum showed toxicity in uptake of	In Ref. 37, the authors mentioned that "Cu deficiency in plants is an important factor as it results in yield losses, with little evidence of the characteristic symptoms." "Higher concentration than optimum showed toxicity in uptake of nutrients." The discussion in the review is regarding high concentration of elements, and the statement is used to support negative effects if high amount of Cu is used.

		nutrients (Passam et al (2007). Passam et al (2007) is a review paper	
		about tomato nutrition and fruit	
		quality which does not mention	
		nanoparticles anywhere.	
30	NPs induce the accumulation of ROS, causing damage to lipids and proteins.126 [par. 4.2.1] [ref. 126]	Ref. 126 is a study of the effect of Fe NPs (as a proxy for industrial emissions) on a bryophyte in which the authors did not find any impact on plant health (measured by ATP generation) or any significant disturbance in ROS generation. They also did not find any significant increase in malondialdehyde levels and no damage to cell membranes. It is therefore incorrect to use this reference to make the general statement that NPs induce the	In Ref. 126, the authors did find ROS increase. "We did not observe significant changes in the quantities of ROS/RNS except for a significant increase (p<0.05) after 3 days of exposure at 50 ng and 50 mg/plant (Fig. 3)." "We observed ROS/RNS over production in P. patens for both the longest time period and the highest doses." Although in their study they did not find damage to cell membranes, they discussed this phenomenon found in
		accumulation of ROS and cause damage to lipids and proteins.	other studies.
31	NPs can undergo chemical changes in plants, such as redox and valence transformation, which can cause damage to plants. 9,128 [par. 4.2.1] [refs. 9, 128]	Ref. 9 is a review on the benefits of using NPs to fertilize fruit crops, where they have included just one case of damage /negative effects of NP application to a fruit crop (Negative effects of NPs in different fruit tree species may occur at high concentrations, but since there is limited knowledge on this topic, no definite conclusion can be made.). This reference does not mention chemical changes to NPs in plants like redox or valence transformations.	 Based on statement from Ref. 9 "After penetrating the leaf or root cuticle tissue, NPs move through different pathways (apoplastic, symplastic, lipophilic and hydrophilic), which influence their effectiveness, final fate and may also change their properties and therefore their reactivity, delivery and translocation inside plant tissues, which may result in various responses of different plant parts to the same NP." Ref. 128 was cited by mistake.
		Ref. 128 is a study of broad beans cultivated in a soil amended with varying levels of cadmium sulfide NPs. It examines how the metabolic, phenotypic and biochemical response of the plants change as a result of heavy-metal induced stress and if the outcome is toxicity or detoxification,, but it does not engage with any use of foliar NPs or their chemical	

		transformation in plants.	
32	The interaction	Ref. 5 is study of Ag NPs uptake and	Based on the statement in Ref. 5 "After
	between NPs and cells	translocation in lettuce after foliar	uptake and accumulation of AgNPs(total),
	may cause some	and root exposure, where they	particles can deposit and/or aggregate in
	mechanical damage to	observe phytotoxicity but there is no	plasmodesmata and in the cell wall,
	the cell structure, such	evidence (such as microscopy data)	which might cause mechanical damage
	as blocking the ducts,	of the mechanical damage to the cell	and/or the blockage of intercellular
	cell wall pores, and	structure that Hong et al. (2021)	communication. This could affect
	stomata, resulting in	refers to, i.e. "blocking the ducts, cell	nutrient uptake and translocation, and
	obstruction of nutrient	wall pores, and stomata". There is	the regulation of plasma membrane
	uptake and	only speculation, as can be seen here:	receptors, as well as plasma membrane
	transport.5,87 [par.	"The action chain of toxicity of	recycling and signaling in plants."
	4.2.1] [ref. 5]	particulate Ag was induced by the	
		penetration of AgNPs into cells,	
		followed by the translocation to	
		various organs and by suggested	
		blocking of internal trafficking, thus	
		resulting in biomass reduction".	
33	Foliar application and	Ref. 81 is a study of a simulated	It is a mistake to cite Ref. 81.
	root pathways can work	trophic transfer of cerium, where	
	together to reduce plant	lettuce is subjected to both root and	Based on the statement in Ref. 102
	damage and improve	foliar exposure of 141Ce and then fed	"Moreover, in real applications, foliar
	utilization of	to snails. However, the study does not	sprayed γ-Fe2O3 NPs may be utilized
	nutrients.81,102 [par.	relate to the topic of nutrient	together with soil supplied y-Fe2O3
	4.2.1] [refs. 81, 102]	utilization or phytotoxicity/plant	NPs to alleviate chlorosis and improve
		damage.	the iron use efficiency."
		Ref. 102 is a study where γ -Fe2O3	
		nanoparticles were foliar applied to	
		citrus. There was no evidence of	
		increased root activity or promotion	
		of plant growth following	
		application, so this reference cannot	
		be used to support the statement.	
		Supposedly, this section from ref. 102	
		is the reason for the choice of	
		reference: We observed the uptake of	
		iron into shoots but no difference of	
		iron content in C. maxima roots	
		between all treatments, suggesting	
		that no downward transport of iron	
		occurred in C. maxima plants. In our	
		previous study, we observed that	
		root-applied y-Fe2O3 NPs had no	

34	Furthermore, it is worth noting that the accumulation of heavy metals, pesticides, and antibiotics in plants is significantly reduced when metalbased or carbon-based NPs are applied.36 [par. 4.2.1] [ref. 36]	translocation from roots to shoots. Therefore, either foliar spray or root supply of γ -Fe2O3 NPs alone cannot meet the requirement of the whole plants. A combination of both application methods may improve the effectiveness of iron fertilization in agricultural and horticultural production. Ref. 36 is a food science review on uptake of nanoparticles and writes: metal- or carbon based NPs can significantly reduce the accumulation of heavy metals, pesticides, and antibiotics in plants, suggesting that nanotechnology for soil remediation may be an efficient and sustainable approach to recovering land for agricultural use (emphasis added). The reference considers the specific context of NP application to contaminated soils. When Hong et al. writes applied in a review on foliar application it would be natural to assume they are not mentioning results from soil application, and the reference is thus misleading if not	Even though this review is focused on foliar application, the effects of NPs dropping down into soil by wind or rainfall after foliar application should not be ignored.
35	Therefore physical barriers, such as plastic greenhouses to reduce the adsorption of atmospheric particulate matter by plants and cultivating tall shrubs and plants that can block and accumulate pollutants in highly polluted areas can be alternative mitigating measures to reduce potential accumulation	The referenced papers do not directly concern physical barriers to protect against NPs, or evidence that this has an effect. They do, however, find that deposition of NPs on foliage can be a health concern. Ref. 35 finds that NPs from urban areas can be carcinogenic in healthylooking new lettuce leaves. Ref. 39 finds that atmospheric deposition of NPs is a health concern, but no mentions of physical barriers were found in the paper. Ref. 89 studies adhesion of NPs to	 Ref. 35 and Ref. 39 had statements about plants accumulating pollutants from atmospheric aerosols and atmospheric deposition. Ref. 89 contains suggestion about physical barriers. Ref.35 "Over the last few years, studies concerning foliar metal transfer have demonstrated that the leaves can accumulate heavy metals from atmospheric aerosols and may reduce PM amount in the atmosphere, i.e., foliar dust." "Finally, plant leaves are effective particulate interceptors and have high
	and risks of NPs in plants.35,39,89 [par.	foliage. One sentence in the discussion is relevant for the	potential of transferring airborne trace elements to the food chain."

	4.2.1] [refs. 35, 39 and	statement, referencing Song et al.	"Indeed, vegetation can effectively adsorb
	89]	(2015), which is a study on urban	and reduce particulates in the air by
	-	trees effects in mitigation of airborne	capturing the airborne PM on their
		particulate matter.	leaves."
			In Ref. 39, "These results showed that
		Song et al. (2015), Atmos. Environ.,	heavy metals accumulation in pakchoi
		105:53–60	shoots exposed to high deposition areas
			was not only from the root transfer of
			the original heavy metals in soils but
			also from atmospheric deposition.
			Previous research also showed that the
			majority of Ni and Cu found in birch
			foliage in the heavily contaminated site
			was resulted from atmospheric
			deposition."
			"Therefore, some solutions of reducing
			the effects from atmospheric deposition
			should be taken, such as plastic
			greenhouse planting in slightly polluted
			soil near the smelter [47]. However, the
			seriously contaminated soil were not
			recommended for planting vegetables
			due to high health risks of consumption,
			even excluding the effects of
			atmospheric deposition. Some
			hyperaccumulators or high biomass
			plants (Elsholtzia Splendens,
			Pennisetum sp., and Sedum
			plumbizincicola) were recommended
			and planted in seriously contaminated
			soil for phytoremediation [39]."
			In Ref. 89, "Since NPs are not removed by
			washing only with water, strategies to
			limit human consumption of metallic
			NPs from atmospheric deposits and
			agricultural foliar sprays should focus
			on the removal of outer peels and leaves
			and implementation of physical
			barriers, such as the use of greenhouses
			and the cultivation of tall bushes and
			trees on garden perimeters."
36	Foliar application of	Ref. 22 does not report promotion of	In Ref. 22, the authors summarized that
	NPs can promote	growth, but phytotoxicity and	"Application of some of NPs become an
	growth, biomass	concerns for public health.	active ingredient for plant

	production, and yield in	Ref. 14 found both positive or	micronutrients and increase nutrient
	some agricultural	negative growth in habanero peppers	availability by the developing crop.
	crops22,41 and can	depending on the amount applied. No	Reports show the positive impacts from
	cause nutrient	clear findings of the effects	metal/metal oxide NP on crop growth
	deficiency, retard root	mentioned by Hong et al.	and pathogen inhibition, such as Ag,
	elongation, and delay	In ref. 94 they studied the response of	ZnO, TiO2, CuO. The increase in crop
	flowering in	wheat to salinity stress, and found	growth/yield might occur simply by the
	others.14,94 [par. 4.3]	that foliar application of FeO NPs	result of anti-pathogenic activity of the
	[refs. 22, 14 and 94]	increased growth.	NP itself, or indirectly through the
			induction of key defensive pathways
			and metabolites within the plant."
			Ref.14 should been cited in the first half
			sentence, together with Ref. 22 and 41.
			In Ref. 94, the authors stated that
			"Adequate Zn can accelerate the wheat
			growth, tillers, and anthesis, while
			excessive Zn content in the
			environment will inhibit the growth of
			wheat seedlings."
			These four references talked about both
			positive and negative effects of foliar
			applied NPs, and should have been cited
			together at the end of the sentence.
37	"NPs can affect plant	In this section, they do not reference	There is more than enough information in
	growth by releasing	directly to papers studying ROS, even	Ref. 130, 12 and 129 to support our
	toxic ions, hindering	though several well-established	statement. The two papers (Gill and
	biochemical processes.	reviews on ROS production.	Tuteia (2010) or Apel and Hirt (2004)
	and inducing imbalance	signaling and defense systems can be	mentioned are not related to
	in reactive oxygen	found, e.g. Gill and Tuteia (2010) or	nanoparticles' effects.
	species (ROS),130 An	Apel and Hirt (2004).	In Ref. 130 "The indirect effects of NPs
	appropriate amount of		are caused inter alia by the release of
	ROS plays a key role in	130. 12 and 129: Are all studies of NP	toxic ions (e.g., metal ions).
	plant development, cell	application and development of	enhancement of the bioavailability of
	division. and gene	antioxidants. None is directly	some toxic compounds, or by causing
	expression 133	investigating ROS effects, although	overproduction of reactive oxygen
	However, excessive	the effects of ROS are mentioned in	species (ROS) [1.2.6]."
	production of ROS in	introductions and discussions.	"Most studies have demonstrated that an
	plants will cause the		excess of metal-based NPs can cause
	reduction of protein	Gill and Tuteia (2010). Plant Physiol	negative effects like reduced
	content DNA damage	Biochem 48(12):909-30	germination dry weight biomass and
	and linid perovidation	Apel and Hirt (2004) Appual Review	transpiration disturbances in the
	and lead to plant death	of Plant Biology 55:373-309	nhotosynthetic process chlorophyll
	eventually 12 120 [nor	61 1 min Diology. 35.575-577	degradation protein reduction DNA
	13 [refs 120 12 and		damage nutrient displacement and
	+.51 11018. 150, 12 and		annage, numerit displacement, and

	129]	others [8,9]. NPs trigger an oxidative burst by interfering with the electron transport chain and the production of ROS [1]."
		In Ref 12. "Ceria NPs are reported to have both beneficial and toxic effects on biological systems (Yokel et al., 2014; Walkey et al., 2015). The particles can exert a pro-oxidative effect by producing reactive oxygen species (ROS) which damage lipids, proteins, DNA, and cause cell death. On the other hand, ceria NPs have been shown to be excellent free radical scavengers and therefore protecting cells from avidative demages (Dable and Arei
		oxidative damages (Dahle and Arai, 2015)."
		significantly increased the leaf area in the plants under salt stress conditions. Total phenolic, flavonoid and anthocyanin content, as well as the activity of guaiacol peroxidase, ascorbate peroxidase, catalase and glutathione reductase enzymes were enhanced in the shoot and root of the plants treated with 100 mM of NaC1 solution."
		"Reactive oxygen species (ROSs) produced during oxidative stress react with lipids, proteins, nucleic acids and cell enzymes and induce planned cell death pathway, ultimately leading to plant damage (Gill and Tuteja, 2010). Under natural conditions, there is a balance between the amount of ROSs production and scavenging. However, under severe environmental stresses, the balance is disturbed and the oxidative stress is produced in plants cells accordingly (Hussain et al.,
		2016)." "In previous studies, iron oxide NPs

			increased the antioxidant enzymes activity in wheat plants under salinity stress (Babaei et al., 2017), and
			improved antioxidant activity (Rizwan et al., 2018)."
38	Malondialdehyde (MDA) is the end product of polyunsaturated fatty acid oxidation, which directly reflects the degree of lipid damage caused by oxidative stress.99 [par. 4.3] [ref. 99]	Ref. 99 is not a study on the effects of MDA, but a study on the effects of iron sulfide NP application on growth in B. juncae, where MDA contents was used as a proxy for membrane damage by lipid peroxidation. However, this sentence was found almost word-for-word in Hong et al. s reference no. 134, Zhang et al. (2018), which was not referenced for this statement. Zhang et al. writes the following: MDA is an end product of polyunsaturated fatty acid oxidation, which directly reflects the extent of lipid damage induced by oxidative stress. Emphasis added to the differences between Hong et al. and the quote from Zhang et al. Zhang et al. (2018) Environ. Sci. Technol. 52:8016-8026	In Ref. 99, the authors had this statement "Malondialdehyde is produced as a result of lipid peroxidation which is an index of membrane damage (Sharma et al., 2012b)."
39	Some studies have	Ref. 9 is a review focusing on the	This was a mistake, it should be only Ref.
	shown that the photosynthetic related	positive aspects of foliar NP application in fruit crops. No	90.
	processes of plants are	mentions of negative impacts on	
	inhibited after foliar	photosynthesis, chloroplast	
	application of NPs, which includes	could be found	
	decreased		
	photosynthetic activity,		
	damaged chloroplast		
	membrane, decreased		
	gas exchange		
	[refs. 9 and 90]		
40	and destroyed	Ref. 35 is a study of foliar transfer of	The statement should not have included
	chlorophyll	metals in lettuce which found	"destroyed chlorophyll machineries".
	machineries that	necrotic leaves after exposure to CdO	Ref. 135 was cited by mistake. It should
	resulted in leaf	NPs. Speculated causes were: metal	be only Ref. 35.

	chlorosis, necrosis, and	uptake which could affect	
	senescence. 35,135	metabolism, and metal aggregates on	
	[par. 4.3] [refs. 35 and	the surface which could interfere with	
	135]	gas exchange, but not a destruction of	
	_	chlorophyll machinery.	
		Ref. 135 studies erythromycin in	
		algae, and did not apply	
		nanomaterials.	
41	On the other hand,	Ref. 17 contains no mention of	Ref. 17 cited for enzyme activity and
	some literature reports	photolysis, but does report an	water photolysis is from Ref. 117: "For
	have shown that foliar	increase of stress enzymes and	example, TiO_2 NPs could promote the
	sprav of TiO2 NPs can	chlorophylls in cowpea after foliar	light absorption by the chloroplast in
	increase the	application with TiO2 NPs.	Arabidopsis, regulate the distribution of
	photosynthetic rate by	11	light energy from PSI to PSII, and
	stimulating enzyme	Ref. 27 contains no mention of	accelerate the transformation from light
	activity and	TiO2, but studies Ag@CoFe2O4	energy to electric energy. water
	accelerating the	NPs.	photolysis, and oxygen evolution (Ze et
	photolysis of		al. 2011)."
	water.17.27 [par. 4.3]		
	[refs. 17 and 27]		The citation should be Ref. 17 & 117, not
			17 & 27.
42	A study showed that	The statements cannot be directly	Ref. 134 discussed: "Glycine (Gly) and
	glycine and serine are	supported by the reference, which	serine (Ser) are two essential amino
	two essential amino	merely refers to others:	acids formed during photorespiration,
	acids which are formed	Ref. 134 states: Gly/Ser ratio is	and the Gly/Ser ratio is commonly used
	during	commonly used as an indicator of	as an indicator of photorespiratory
	photorespiration, and	photorespiratory activity. and	activity." "Wingler et al.37 suggested
	their ratio is usually	Wingler et al. suggested that the	that the photorespiration pathway may
	used as an indicator for	photorespiration pathway may	provide additional protection against
	photorespiration	provide additional protection against	oxidative damage in under high light
	activity and leaf	oxidative damage under high light-	induced stress by supplying glycine,
	senescence. Glycine	induced stress by supplying glycine,	which can be used for the synthesis of
	can also be used to	which can be used for synthesis of the	the broad defense molecule glutathione.
	synthesize a wide range	broad defense molecule glutathione.	Earlier reports also demonstrated that
	of defense molecules		the Gly/Ser ratio is a sensitive
	including		biomarker of leaf senescence, changing
	glutathione.134 [par.		significantly even prior to senescence
	4.3] [ref. 134]		symptoms."
43	In addition, the	Ref. 9 contains no mention of starch,	In Ref. 9, there is a discussion about sugar
	application of NPs may	sucrose or carbohydrate.	change based on NPs treatment:
	change the activities of	Ref. 133 is a paper about As toxicity.	"Treatment with N-containing NFs at
	starch-degrading	It mentions changes in enzyme	0.25(N1) and 0.50 (N2) g/L also
	enzyme, starch	activity as a response to As, but not as	improved the quality of pomegranate
1	ale and any land	a response to ND application Hora	fruits by increasing arilinice (mL/100 g

	sucrose phosphate synthase in plants, thus inducing the change of carbohydrate content in plants. 9,133 [par. 4.3] [refs. 9 and 133]	the authors state: "Additionally, a strong inhibition of the activities of starch degrading enzymes, i.e., α - and β -amylase, and starch phosphorylase has been reported as a result of As-induced plant toxicity. () Furthermore, the upregulation in activities of sucrose-hydrolyzing enzymes, namely acid invertase and sucrose synthase, was investigated along with the suppression of activity of sucrose phosphate synthase, under in-situ As toxicity."	 arils) (control: 62.5; N1: 63.3; N2: 68.3), total sugars (g/100 g juice) (control: 14.18; N1: 14.56; N2:15.54) and TA (%) (control: 1.74; N1: 1.84; N2: 1.89) of fruits. 41 An increase in N concentration improved turgor pressure 50, carbohydrate supply 45 and translocation of organic acids 51." In Ref. 133, the authors discussed that enzyme activities could affect starch and sugar content. So these two references were cited and to dicuss that "the application of NPs may"
44	However, the application of NPs on leaves may result in the oxidation of several amino acids (such as lysine, methionine, proline, threonine, etc.) to form free carbonyl groups, which will inhibit the activity of protein.127,133 [par. 4.3] [refs. 127 and 133]	Ref. 127 studies oxidative stress response after application of Ag NPs, with no mentions of amino acid oxidation nor the formation of carbonyl groups. Ref. 133 is a study on As uptake and toxicity. There is no mention of NPs. The authors might have read the following statements regarding ROS, and included it because NPs have been shown to induce ROS production: "The ROS produced in response to As stress can modify proteins, thereby delivering carbonyls. The amino acids, particularly Arg, His, Lys, Pro, Thr, and Trp, of any protein become oxidized and form free carbonyl groups, which may inhibit or alter the protein activities. These references are not a sufficient basis to confirm the stated effects of NP application.	 Ref. 127 discussed "ROS generation and scavenging during SNPs" discussed about ROS generated under NPs treatment. In Ref. 133, the authors pointed out that protein are oxidized by ROS. In Ref. 133: "In addition to hydrolysis, like lipid moieties, proteins are also susceptible to ROS attack [239] (Figure 3). These ROS-induced modifications in proteins may be initiated by leakage of electrons during metal ion-dependent reactions and auto-oxidation of both carbohydrate and lipids [198]. The ROS produced in response to As stress can modify proteins, thereby delivering carbonyls [239]. The amino acids, particularly Arg, His, Lys, Pro, Thr, and Trp, of any protein become oxidized and form free carbonyl groups, which may inhibit or alter the protein activities [240,241]."
45	Tyrosineandphenylalanineareprecursors of alkaloids,glucosinolatesandothersecondarymetabolites; when thesetwo amino acids are up-	Ref. 134 contains no mention of tyrosine. Phenylalanine was only mentioned in this statement: Biological pathway analysis also reveals that phenylalanine metabolism, which is a stress response-related biological pathway.	This part was based on statement from Ref. 137: "As mentioned before, phenylalanine and tyrosine are precursors of defense related secondary metabolites. Their up-regulation in whole plant tissues indicates the activation of defensive systems."

	regulated they can be an	was disturbed at the dose of 40 mg of	"Tyrosine and phenylalanine are
	indicator of activated	AgNPs .	precursor compounds for a variety of
	defense response. 134		secondary metabolites such as
	[par. 4.3] [ref. 134]		phenylpropanoids, alkaloids and
			glucosinolates, 36 the up-regulation of
			these two amino acids is a likely
			indicator of leaf activated defense
			response."
			Ref. 134 cited by mistake, it should be
			137.
46	Also, when the contents	Based on the references, this	In Ref. 134, the authors mentioned clearly
	of linolenic acid, which	statement is highly speculative.	that "All of these metabolite changes
	is one of the main	Ref. 134 finds a downregulation of	are indicative of Ag-induced disruption
	components of the	the synthesis of linolenic acid as a	to the composition and integrity of lipid
	plasma membrane	response to Ag NPs However this	membranes "Also their results showed
	decrease significantly it	study does not investigate the effects	that "The malondialdehyde (MDA)
	indicates that the cell	of such downregulation on the	content in cucumber leaves exposed to
	membrane is	intactness of the membrane They	4 and 40 mg AgNPs significantly
	destroyed 134 136 [par	speculate that it either indicates a	increased (28.6% and 44.93%
	4 3] [refs 134 and 136]	lipid peroxidation and damage or that	respectively $p(0.05)$ as compared to the
		it is caused by a change in membrane	control " "Here the MDA increase
		composition as an acclimation to the	indicates potentially significant
		NPs to rebuild membrane integrity:	membrane damage as a function of
		Clearly one potential reason for the	AgNPs exposure "So lipolenic acid
		observed up or downregulation of	definitely related to cell membrane
		fatty acid metabolites is the result of	damage
		linid perovidation Another	In Ref. 136, the authors stated "Linolenic
		possibility is that plants adjust the	acid a major component of the plasma
		membrane composition to rebuild	membrane" which we used to support
		membrane integrity and to restrict A g	the statement " linelenic acid which
		ion normostion into colla Howaver	is one of the main components of the
		this is not confirmed in the study	nlasma membrana "
		Pof 126 studies offsets of C60	plasma memorane
		Kel. 150 studies effects of Cou	
		linelanic acid fallowing falian ND	
		inotenic acid following foliar NP	
		application. However, they merely	
		state that this is an indication of an	
		antered cell memorane composition,	
		Their manufactory in direct that and the	
		membrone diametical examples	
		memorane disruption occurred upon	
		exposure to both doses of C60	
		rulierols. This suggests that C60	
		tullerols may possibly alter the	

	membrane composition, instead of	
	physically damaging it, thus the	
	opposite of Hong et al. s statement.	