Supplementary Data

Microwave-assisted synthesis of Z-scheme heterojunction Ag/AgBr@BiOBr/Bi₂O₃

photocatalyst for efficient organic pollutants degradation under visible light

Van Quang Nguyen,^{a,b,1} Manjiri A. Mahadadalkar,^a Abdelrahman M.Rabie,^{a,c,1} and Jae-Jin Shim^{a,*}

^aSchool of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.

^bFaculty of Road and Bridge Engineering, The University of Da Nang – University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam. ^cPetrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt.

¹ These authors contributed equally to this work.

*Corresponding author. Email address: jjshim@yu.ac.kr (J.-J. Shim).

S1. Synthesis of pure BiOBr sample

The BiOBr sample was synthesized by a hydrothermal method. Typically, 0.36 g of KBr was dissolved in 20 ml of DI water. Subsequently, 0.97 g of $Bi(NO_3)_3 \cdot 5H_2O$ was added to the KBr solution. The mixture was stirred for 30 min before transferring to a 30 ml-stainless autoclave. The reaction was conducted at 160 °C for 12 h. The white solid obtained after the reaction was collected and washed several times with DI water to remove the chemical residues. Finally, the sample was dried overnight in an oven at 60 °C. **Fig. S1a** presents the XRD patterns of BiOBr.

S2. Synthesis and characterization of the pure Bi₂O₃ sample

Typically, 0.075 g of CTAB was completely dissolved in 50 ml of DI water, followed by the addition of 1 ml of 70% HNO₃. Then, 1.063 g of Bi(NO₃)₃·5H₂O was added to the above solution. The reaction was carried out at room temperature for 3 h. A white solid was collected by filtration and washed with DI water until it reached pH = 7. Finally, the sample was dried in an oven at 60 °C for 12 h. The XRD pattern of the Bi₂O₃ sample is shown in **Fig. S1b**.

Fig. S1. XRD patterns of pure BiOBr (a) and Bi₂O₃ (b) samples.

S3. Characterization of the as-prepared catalysts

Fig. S2. (a) Nitrogen adsorption-desorption isotherm and (b) pore-size distribution of the asprepared Ag/AgBr@BiOBr/Bi₂O₃catalyst.

Fig. S3. FTIR spectra of the prepared materials.

S4. Calculation of conduction band (CB) and valence band (VB):

The bandgaps estimated from Tauc plots were 2.72, 2.80, and 2.34 eV for BiOBr, Bi_2O_3 , and AgBr, respectively. The CB and VB edge positions (E_{CB} and E_{VB} , respectively) of semiconductors can be calculated using the following empirical formula [1, 2, 3]:

$$E_{CB} = \chi - E_{\rm e} - 0.5E_g \tag{Eq. S1}$$

$$E_{VB} = E_{CB} + E_g \tag{Eq. S2}$$

where the χ represents the electronegativity of the semiconductor, which is the geometric mean of the electronegativity of the constituent atoms and is about 6.17 [4], 6.24 [1], and 4.42 eV [2] for BiOBr, Bi₂O₃, and AgBr, respectively; E_e is the energy of free electrons on the hydrogen scale (4.5 eV vs. NHE); and E_g is the energy of bandgap. Using Eqs. S1 and S2, E_{CB} was obtained as +0.31, +0.34, and -1.25 eV and E_{VB} , as +3.03, +3.14, and +1.09 eV for BiOBr, Bi₂O₃, and AgBr, respectively. The values are similar to the literature [1, 2, 3].

S5. Comparison of photodegradation performances of the as-prepared catalysts

Fig. S4. Photodegradation of a 10 mg L^{-1} aqueous solution of TCH on the Ag/AgBr@BiOBr/Bi₂O₃ catalysts (S1, S3, S5, S7, and S10, synthesized using 100, 300, 500, 700, and 1000 µl of 0.1 M AgNO₃ solution, respectively). Photodegradation conditions: catalyst loading of 0.5 g L^{-1} , 10 mg L^{-1} of TCH, and 150 W Xe lamp-solar simulator.

Fig. S5. Adsorption kinetics of Ag/AgBr@BiOBr/Bi₂O₃ sample with three different pollutants in the dark (Catalyst loading of 0.3 g L^{-1} , initial pollutant concentrations of 10 mg L^{-1}).

Fig. S6. Comparison of the photocatalytic performance (a) and reusability (degradation efficiency after reuse cycles) (b) in the MO degradation of Ag- and Bi-containing photocatalysts reported in the literature and this work.

Fig. S7. TOC removal efficiency during the degradation of TCH using the AgBr@BiOBr/Bi₂O₃ photocatalyst.

S6. Comparison of the fresh and used catalysts

Fig. S8. TEM images (a) and XRD patterns (b) of Ag/AgBr@BiOBr/Bi $_{2}^{O}_{3}$ catalysts (the fresh and the used for nine cycles).

Fig. S9. XPS survey spectrum of the fresh and the 9-cycle-used Ag/AgBr@BiOBr/Bi₂O₃ catalyst.

S7. Tables of calculated data and comparison with literature

Table S1	. Kinetic	parameters	(multiexponential	fitted	parameters	and	average

Samples	A ₁ (%)	τ_1 (ns)	A2 (%)	$ au_2$ (ns)	A3 (%)	τ ₃ (ns)	A ₄ (%)	τ_4 (ns)	τ _A (ns)
AgBr	20.13	0.2646	0.65	2.70	79.22	0.0238	-	-	0.69
BiOBr/Bi ₂ O ₃	12.07	4.6	0.12	120	87.81	0.723	-	-	14.76
Ag/AgBr@ BiOBr/Bi ₂ O ₃	77.92	0.535	2.51	11	19.48	2.55	0.09	143	16.75

lifetime) for emission decay of the as-prepared photocatalysts

- τ_i : Individual lifetime (ns) A_i: the corresponding amplitude in a normalized percentage (%) τ_A : Average lifetime of the charge carriers (ns).
- **Table S2**. Photocatalytic activity of the Ag/AgBr@BiOBr/Bi₂O₃ catalyst (loading 0.3 g L⁻¹) in the degradation reaction of RhB (initial concentration 10 mg L⁻¹) for 60 min under visible light

Temperature	Apparent rate constant	Degradation efficiency	Regression coefficients
(°C)	(k, \min^{-1})	$(\eta, \%)$	R ²
25	0.073	91.4	0.99
35	0.116	95.0	0.99
45	0.146	99.3	0.97

Catalysts	Cat. load, w (g L ⁻¹)	Power of light source (W)	Degr. eff., η (%)	Pollu- tants	Initial conc., <i>C</i> _o (mg L ⁻¹)	Degr. time, t _d (min)	Perform. index, <i>I</i>	Ref.
BiOBr/BiOCl	1	500 W Xe lamp [λ > 390 nm]	86	RhB	10	90	19.1	[5]
α -Bi ₂ O ₃ /BiOBr	1	500 W Xe lamp $[\lambda > 420 \text{ nm}]$	90	RhB	20	210	8.6	[6]
Ag QDs/BiOBr	0.2	300 W Xe lamp [λ > 400 nm]	97.9	RhB	20	20	815.8	[7]
AgBr/Bi ₂ O ₃	1	500 W Xe lamp $[\lambda > 400 \text{ nm}]$	92	RhB	5	60	30.7	[8]
BiOBr/Ag ₃ PO ₄	0.5	500 W Xe lamp $[\lambda > 420 \text{ nm}]$	99	RhB	5	30	132.0	[9]
$Ag/\beta\text{-}Bi_2O_3$	1	$\begin{array}{c} 400 \text{ W X-W lamp} \\ [\lambda > 420 \text{ nm}] \end{array}$	98	RhB	10	210	11.7	[10]
AgBr/{001} BiOCl	0.5	300 W Xe lamp [λ > 420 nm]	100	RhB	9.6	15	444.4	[11]
AgBr/{101} BiOCl	0.5	300 W Xe lamp [λ > 420 nm]	87.9	RhB	9.6	15	390.7	[11]
SnS ₂ /BiOBr	0.63	400 W Xe lamp [λ > 420 nm]	88	RhB	10	30	116.4	[3]
BiOBr/TiO ₂	0.25	300 W Xe lamp [λ > 400 nm]	100	RhB	10	20	666.7	[12]
$\begin{array}{c} BiOBr/Bi_2O_3/\\BiO_{0.67}F_{1.66}\end{array}$	0.5	500 W Xe lamp [λ > 420 nm]	98.6	RhB	10	15	262.9	[13]
AgBr/BiOBr	1	300 W Xe lamp [UV cut-off filter]	100	RhB	20	30	111.1	[14]
Ag/AgCl /BiOCl	0.8	500 W Xe lamp [λ > 400 nm]	100	RhB	10	50	50.0	[15]
Ag/AgBr@ BiOBr/Bi ₂ O ₃	0.3	2.4 W LED lamp [White light]	98	RhB	10	180	7561.7	This work
"	0.3	400 W Halogen lamp (OHP) [λ > 420 nm]	100	RhB	10	50	166.7	"
Ag/AgI/ Bi ₃ O ₄ Cl	0.2	5 W- LED [White light]	61	МО	20	180	3389.0	[17]
Ag/Bi ₂ O ₃	1	500 W Xe lamp $[\lambda > 420 \text{ nm}]$	51	МО	20	180	5.7	[18]
AgBr/Bi ₂ O ₃	1	500 W Xe lamp	92	MO	15	120	15.3	[19]

Table S3. Performance of Ag- and Bi-containing photocatalysts in the literature and this study

		$[\lambda > 420 \text{ nm}]$						
AgBr/Ag/ BiOBr	2	300 W Xe lamp [-]	93	МО	26.7	40	38.7	[20]
Ag/AgBr@ BiOBr/Bi ₂ O ₃	0.3	400 W Halogen lamp (OHP) [λ > 420 nm]	96.6	ΜΟ	10	60	134.2	This work
Ag/AgCl/BiOCl	0.4	500 W Xe lamp [λ > 400 nm]	81.2	ТСН	10	120	33.8	[15]
Ag QDs/BiOBr	0.5	300 W Xe lamp [λ > 400 nm]	77.2	TCH	10	120	42.9	[7]
BiOBr/(CMC)	0.25	300 W Xe lamp $[\lambda > 420 \text{ nm}]$	97	TCH	20	60	215.6	[16]
Ag/AgBr@ BiOBr/Bi ₂ O ₃	0.3	400 W Halogen lamp (OHP) [λ > 420 nm]	93.7	ТСН	10	60	130.1	This work
"	0.5	150 W Xe lamp [λ =256–1900 nm]	98.6	ТСН	10	60	219.1	"

1. QD: quantum dot, CMC: carboxymethyl cellulose, OHP: overhead projector.

2. Performance index, $I = (\eta \times 10^4)/(w \times t_d \times P_l)$, η is the degradation efficiency (%), w is the catalyst loading (g L⁻¹), t_d is the degradation time (min), and P_l is the power of the lamp (W).

References

- [1] B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, M. Chen, Y. Liu, W. Zhang, and H. Feng, Nitrogen-doped hollow mesoporous carbon spheres modified g-C₃N₄/Bi₂O₃ direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light, ACS Sustainable Chem. Eng. 2018, 6(12), 16424–16436.
- [2] W. Li, Q. Chen, X. Lei, and S. Gong, Fabrication of Ag/AgBr/Ag₃VO₄ composites with high visible light photocatalytic performance, *RSC Adv.* 2019, 9(9), 5100–5109.
- [3] F. Qiu, W. Li, F. Wang, H. Li, X. Liu, and J. Sun, *In-situ* synthesis of novel Z-scheme SnS₂/BiOBr photocatalysts with superior photocatalytic efficiency under visible light, *J. Colloid Interface Sci.* 2017, 493, 1–9.
- [4] H. Zhang, C.-G. Niu, S.-F.Yang, and G.-M. Zeng, Facile fabrication of BiOIO₃/BiOBr composites with enhanced visible light photocatalytic activity, *RSC Adv.* 2016, 6, 64617.
- [5] D. Ma, H. Liu, J. Huang, J. Zhong, J. Li, and D. Wang, Improved photocatalytic performance of flower-like BiOBr/BiOCl heterojunctions prepared by an ionic liquid assisted one-step hydrothermal method, *Mater. Lett.* 2019, 238, 147–150.
- [6] L. Shan, Y. Liu, H. Chen, Z. Wu, and Z. Han, An α-Bi₂O₃/BiOBr core–shell heterojunction with high photocatalytic activity, *Dalton Trans.* 2017, 46, 2310.
- [7] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Y. Huang, Z. Chen, and H. Li, New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications, *Appl. Catal. B Environ.* 2016, **188**, 376–387.
- [8] W. Gou, P. Wu, D. Jiang, and X. Ma, Synthesis of AgBr@Bi₂O₃ composite with enhanced photocatalytic performance under visible light, *J. Alloys Compd.* 2015, 646, 437–445.
- [9] J. Yan, M. Xu, B. Chai, and H. Wang, *In situ* construction of BiOBr/Ag₃PO₄ composites with enhanced visible light photocatalytic performances, *J. Mater. Res.* 2017, **32(8)**, 1603–1610.
- [10] G. Zhu, W. Que, and J. Zhang, Synthesis and photocatalytic performance of Ag-loaded β-Bi₂O₃ microspheres under visible light irradiation, J. Alloys Compd. 2011, 509, 9479–9486.
- [11] Y. L. Qi, Y. F. Zheng, H. Y. Yin, and X. C. Song, Enhanced visible light photocatalytic activity of AgBr on {001} facets exposed to BiOCl, J. Alloys Compd. 2017, 712, 535–542.
- [12] X. X. Wei, H. Cui, S. Guo, L. Zhao, and W. Li, Hybrid BiOBr–TiO₂ nanocomposites with high visible light photocatalytic activity for water treatment, *J. Hazard. Mater.* 2013, 263, 650–658.

- [13] L. Cheng, J. Yan, S. Zhao, and L. Hao, Multiple charge carrier transfer pathways in BiOBr/Bi₂O₃/BiO_{0.67}F_{1.66} ternary composite with high adsorption and photocatalytic performance, *J. Alloys Compd.* 2019, **778**, 924–932.
- [14] L. Kong, Z. Jiang, H. L. Henry, J. N. Rebecca, T. Xiao, O. J. Martin, and P. E. Peter, Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts, *J. Catal.* 2012, 293, 116–125.
- [15] S. Zhao, Y. Zhang, Y. Zhou, K. Qiu, C. Zhang, J. Fang, and X. Sheng, Reactable polyelectrolyteassisted preparation of flower-like Ag/AgCl/BiOCl composite with enhanced photocatalytic activity, J. Photochem. Photobiol. A: Chem. 2018, 350, 94–102.
- [16] B. Xu, Y. Li, Y. Gao, S. Liu, D. Lv, S. Zhao, H. Gao, G. Yang, N. Li, and L. Ge, Ag-AgI/Bi₃O₄Cl for efficient visible light photocatalytic degradation of methyl orange: The surface plasmon resonance effect of Ag and mechanism insight, *Appl. Catal. B Environ.* 2019, **246**, 140–148.
- [17] Y. Li, Z. Zhang, Y. Zhang, X. Sun, J. Zhang, C. Wang, Z. Peng, and H. Si, Preparation of Ag doped Bi₂O₃ nanosheets with highly enhanced visible light photocatalytic performances, *Ceram. Int.* 2014, 40, 13275–13280.
- [18] S. Yang, C. Chen, L. Liu, L. Zhu, and X. Xu, Facile fabrication of micro-floriated AgBr/Bi₂O₃ as highly efficient visible-light photocatalyst, *Mater. Res. Bull.* 2017, **92**, 29–38.
- [19] Y. Dong, C. Feng, J. Zhang, P. Jiang, G. Wang, X. Wu, and H. Miao, A new p-metal-n structure AgBr-Ag-BiOBr with superior visible-light-responsive catalytic performance, *Chem. Asian J.* 2014. **00**, 0 0.
- [20] M. Y. Liu, Y. F. Zheng, and X. C. Song, Biomass assisted synthesis of 3D hierarchical structure BiOX(X = Cl, Br)-(CMC) with enhanced photocatalytic activity, *J. Nanosci. Nanotechnol.* 2019, 19, 5287–5294.