Supplementary information for

Bi₂O₂CO₃/Bi₂O₃ Z-scheme photocatalyst with oxygen vacancies and Bi for enhanced visible-light photocatalytic degradation of tetracycline

Shoubin Huang^a, Yuliang Wu^b, Qianxin Zhang^c, Xiaoyu Jin^a, Daguang Li^a, Haijin Liu^d, Ping Chen^a, Wenying Lv^a and Guoguang Liu^{a*.}

^a School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China

^b Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China

^c School of Environment, Tsinghua University, Beijing, 100084, China

^d Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China

* Corresponding Author: Guoguang Liu, E-mail: <u>liugg615@163.com</u>, Phone: +86-20-39322547, Fax: +86-20-39322548

Contents

Text S1. Material synthesis4
2.1.1. Synthesis of BOC and BO4
2.1.2. Synthesis of BOC/BO materials4
2.1.3. Synthesis of Bi-BOC/BO-OVs materials4
Text S2. Determination of concentration of TC5
Text S3. Characterization
Text S4. Recycling procedure6
Table S1. C and O and Bi contents in as-prepared samples according to XPS
results7
Table S2. XPS elemental analysis of Bi 4f for Bi-BOC/BO-OVs7
Table S3. Fluorescence decay parameters of BOC, BO, BOC/BO and Bi-
BOC/BO-OVs fit for the decay7
Table S4. Comparison of results (degradation of TC) from our work with other
works
Table S5. Production costs of Bi-BOC/BO-OVs (laboratory level). The price of
energy was 0.79 ¥/kW·h, price of Bi(NO ₃) ₃ ·5H ₂ O was 312.84 ¥/kg, price of
$C_6H_8O_7$ ·H ₂ O was 109.8 ¥/kg, price of HNO ₃ was 141.3 ¥/L, price of NaOH was
118.44 ¥/kg, prices correspond to the Chinese market
Table S6. The rhizomes length of soybean seedlings under the solution of

different concentrations of catalyst, before reation (A) and after 60 min irradiation (B).

Table S7. Chemical structure of the TC and its by-products. 10
Table S8. Scavengers used, RSs quenched, and photocatalytic efficiency with
quenched reactive species during the photocatalytic TC degradation process12
Fig S1. (a) XRD spectrum and (b) UV-vis DRS spectra of Bi-BOC/BO-OVs
system calcined at different temperatures
Fig. S2. (a) Ex-situ/ in-situ irradiated XPS spectra of C1s. (b) High-resolution
XPS spectra of Bi 4f. (c) FT-IR spectrum and (d) Raman spectra of BOC, BO, and Bi-
BOC/BO-OVs14
Fig S3. Adsorption for TC in the darkness of (a) different samples, (b) different
photocatalyst concentrations and (c) different pH of Bi-BOC/BO-OVs. (d) Self-
degradation of TC at different pH without catalyst14
Fig S4. (a) Zeta potential of Bi-BOC/BO-OVs. (b) Species distribution of
tetracycline under different pH15
Fig S5. Leakage of Bi ions in the Bi-BOC/BO-OVs system15
Fig S6. The mineralization of tetracycline during Bi-BOC/BO-OVs
photocatalytic degradation process under visible light16
Fig S7. Fragment chart analyses of the UHPLC-HRMS secondary ion mass
spectrometry of the TC and its by-products21

Texts

Text S1. Material synthesis

2.1.1. Synthesis of BOC and BO

The bismuth subcarbonate (BOC) nanospheres were synthesized according to the synthesis procedure re `ported elsewhere, with appropriate modification of the synthesis conditions.¹ In detail, 0.97 g of bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) was dissolved in 10 mL of 1 M nitric acid (HNO₃), and 0.31 g citric acid monohydrate was then introduced into the solution. The pH of the mixed solution was adjusted to 4.2 with the dropwise addition of sodium hydroxide (NaOH) aqueous solution. The mixed solution was then transferred to a sealed 100 mL Teflon autoclave and heated to 180 °C for 24 h. After naturally cooled to room temperature, the synthetic samples were washed 4 times with deionized water and ethanol in turn and dried under vacuum overnight at 60 °C to obtain the BOC precursor powders. The BOC precursor powder was calcined in a muffle furnace at 350 °C for 2 h to obtain pure BO materials.

2.1.2. Synthesis of BOC/BO materials

For comparison, the BOC precursor powder was calcined in a muffle furnace at 320 °C for 2 h to obtain the BOC/BO materials.

2.1.3. Synthesis of Bi-BOC/BO-OVs materials

The Bi-BOC/BO-OVs materials were synthesized by BOC precursor powders, which were calcined at temperatures in the range of $280^{\circ}C\sim380^{\circ}C$ (with 20 °C intervals) for 2 h under N₂ atmosphere.

Text S2. Determination of concentration of TC.

The concentration of residual TC was detected by high performance liquid chromatography (HPLC, SHIMADZU LC16, Japan). The temperature of Zorbax Eclipse XDB C18 reverse-phase column (4.6×150mm, Agilent, USA) was maintained at 35.0 °C and the detection wavelength of the UV detector was 355 nm. The isocratic mobile phase was made up of 30% methanol and 70% water (with 0.2% formic acid) with a flow rate of 1.0 mL min⁻¹.

Text S3. Characterization

The morphologies of the as-prepared photocatalysts were obtained using scanning electron microscopy (SEM, Hitachi S4800) and transmission electron microscopy (TEM, JEM-2100HR). The specific surfaces area and distribution of pore size was estimated by the Brunauer-Emmett-Teller (BET) method using an ASAP 2020 PLUS HD88 analyzer. Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 ADVANCE diffractometer with a Cu K α radiation source (λ = 0.15418 nm). Fourier transform infrared (FT-IR) measurements were achieved with a Thermo Fisher Nicolet IS50 spectrophotometer. Micro Confocal Raman spectroscopy was measured by HORIBA Jobin-Yvon-LabRAM HR Evolution. X-ray photoelectron spectroscopy (XPS) characterization was accomplished using a Thermo Fisher Scientific ESCALAB 250Xi spectrometer with an Al K α source. Room temperature EPR spectroscopy was performed on probe unpaired electrons of products using an ESR JES-FA200 spectrometer. UV-vis diffuse reflectance spectra (DRS) were obtained via a SHIMADZU UV-2450 spectrophotometer. Photoluminescence (PL)

spectra and transient photoluminescence decay (TRPL) spectra were collected using a HORIBA FluoroMax-4 Fluor-spectrophotometer and a FLS 980 fluorescence lifetime spectrophotometer, respectively. The photoelectrochemical properties of the samples were recorded on an electrochemical workstation (Multi Autolab/204, Metrohm Autolab B.V.) using a Pt wire electrode and saturated calomel electrodes (SCE) as the counter electrode and reference electrode, respectively. A 0.1 M Na₂SO₄ aqueous solution was used as the electrolyte. The TOC removal ratio of the as-prepared photocatalysts was detected using a TOC-VCPH analyzer (SHIMADZU, Japan). The content of bismuth in the solution is detected by inductively coupled plasma-mass spectrometry (ICP-MS, Agilent 700).

Text S4. Recycling procedure

In the cyclic experiment, we established 1 experimental group and 11 control groups to ensure that the amount of catalyst and TC in each experiment remained same. Specifically, the initial experimental conditions were as follows: 240 mg catalyst was added to 600 mL of the TC solution. Once the suspension reached adsorption-desorption equilibrium, the suspended liquid was evenly transferred to 12 quartz tubes for photolytic degradation experiments. The circulating sample was separated by centrifugation and washed with ultrapure water and ethanol for 4 times in turn. Subsequently, the powder was dried in vacuum oven at 60 °C overnight, which was utilized for subsequent degradation experiments. During the cycling experiments, following the decrease of the photocatalyst mass, the volumes of the reaction solutions were correspondingly altered to maintain an invariable

photocatalyst concentration.

Text S5. Determination of RSs

Reactive oxidative species generated during tetracycline degradation were determined by performing scavenger-quenching experiments. Specifically, isopropanol (IPA), me thyl alcohol (MeOH), histidine (His) and 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMP) were employed as hydroxyl radical (\cdot OH) scavengers, photogenerated holes (h⁺), singlet oxygen ($^{1}O_{2}$) and superoxide radicals (O_{2}^{-}), respectively. Scavengers were added to the samples prior to irradiation. Subsequently, each sample suspension was collected for further analysis.

Electron spin resonance (ESR) was used for further direct detection of reactive species. A solution of 0.4 mg/L catalyst and 100 mM capture agent was irradiated under visible light. Specifically, \cdot OH were detected in DMPO aqueous solution, O_2^{-} were detected in DMPO methanol solution, and ${}^{1}O_2$ were detected in TEMP aqueous solution. Subsequently, DMPO- \cdot OH, DMPO- O_2^{-} , and TEMP- ${}^{1}O_2$ signal was measured at different times. Electron spin resonance detection conditions are as follows. Microwave frequency: 9224.637 MHz, power: 0.998 mW, phase: 292, coupling: 242, scanning width: 5 mT, scanning time: 1 min, center field: 329.400 mT.

Text S6. Toxicity test of mung bean

The toxicity of the materials and tetracycline before and after the degradation was investigated by the toxicity test of mung bean. A number of dry and plump mung beans with a mass range between 0.68 - 0.73 g were selected for experiment. Before the experiment, the mung beans were soaked in ultrapure water at a temperature of

about 30 °C for 3 hours for germination pretreatment. Subsequently, each 5 mung beans were placed in a 20 mL clear headspace vial. 2 mL the Bi-BOC/BO-OVs solutions with concentrations of 0, 10, 20, 40, 60, 100 mg/L and the reaction solution before irradiation and after irradiation for 60 min were added to the headspace vials for cultivation. The culture environment was carried out in a constant temperature incubator at 27 °C, and the nutrient solution were taken out and the length of the main body above the root was measured with a ruler.

Tables

Table S1. C and O and Bi contents in as-prepared samples according to XPS results

Samples	С	0	Bi	C/O/Bi	ΔΟ/ΔϹ
BOC	65.47%	27.51%	7.02%	9.33/3.92/1	2/1
Bi-BOC/BO-OVs	66.54%	26.26%	7.2%	9.24/3.65/1	5/1

Table S2. XPS elemental analysis of Bi 4f for Bi-BOC/BO-OVs.

Binding energy and	164.1 eV	162.8 eV	158.8 eV	157.4 eV
type of bonding	Bi ³⁺	Bi ⁰	Bi ³⁺	Bi ⁰
percentage compositio	42.4%	0.8%	53.3%	3.5%
n				

According to the area ratio of the diffraction peaks in Bi 4f, the percentage content of different valence states of Bi was calculated. The sum of $4f_{7/2}$ (164.1 eV) and $4f_{5/2}$ (158.8 eV) is 95.7%, which means that the content of Bi³⁺ in the bismuth element accounts for 95.7%, and the content of Bi⁰ is 4.3%. This is consistent with what others have reported.² The diffraction peaks of Bi⁰ proved the existence of metallic Bi.

Sample	$ au_1$ (ns)	B ₁	$ au_2(ns)$	B ₂	τ ₃ (ns)	B ₃	τ(ns)
BOC	0.0525	1.357	1.7693	0.079	6.7295	0.015	2.982
ВО	0.1194	0.776	1.6274	0.107	7.5375	0.015	3.019
BOC/BO	0.1711	0.960	2.0137	0.039	15.7999	0.002	2.498
Bi-BOC/BO-OVs	0.1783	0.216	1.4042	0.015	5.7347	0.002	1.439

Table S3. Fluorescence decay parameters of BOC, BO, BOC/BO and Bi-BOC/BO-OVs fit for the decay.

Table S4. Comparison of results (degradation of TC) from our work with other works.

Photocatalyst with dose	Morphology	Light source and irradiation time	Photocatalytic performance	Ref
Bi ₂ O ₂ CO ₃				
(10mg in 40 mL drug	Flower-like	Visible light	89.4% degradation	1
(Tonig in 40 hit drug	spherical	irradiation 180 min	of TC (10 mg/L)	
solution)				
OVs-Bi ₂ O ₂ CO ₃				
(50mg in 50 mL drug	Irregular	Visible light	50% degradation	3
(Joing in 30 mL drug	nanoplates	irradiation 300 min	of TC (10 mg/L)	-
solution)				
OVs-BiOCl/Bi ₂ O ₂ CO ₃				
	D' 1'1	Visible light	90% degradation	4
(25mg in 50 mL drug	Pinecone-like	irradiation 200 min	of TC (20 mg/L)	4
solution)			/	

CeO ₂ /Bi ₂ O ₂ CO ₃ (35 mg in 100 mL drug solution)	Spherical Flower	Visible light irradiation 90 min	79.5% degradation of TC (20 mg/L)	5
β-Bi₂O₃/Bi₂O₂CO₃ (100 mg in 100 mL drug solution)	Flower-like hierarchical	Simulated sunlight irradiation 60min	98.8% degradation of TC (30 mg/L)	6
g-C ₃ N ₄ /Bi ₂ O ₂ CO ₃ (20mg in 40 mL drug solution)	Irregular brick	Simulated sunlight irradiation 360min	~95% degradation of TC (20 mg/L)	7
Ag ₃ VO ₄ /Bi ₂ O ₂ CO ₃ (40mg in 80 mL drug solution) Bi-Bi ₂ O ₂ CO ₃ /	Flower-like microspheres	Visible light irradiation 180 min	83.7% degradation of TC (20 mg/L)	8
Bi ₂ O ₃ -OVs	Porous	Visible light	92.9% degradation	Our
(20mg in 50 mL drug solution)	microsphere	irradiation 60 min	of TC (15 mg/L)	work

Table S5. Production costs of Bi-BOC/BO-OVs (laboratory level). The price of energy was 0.79 $\frac{1}{kW}$, price of Bi(NO₃)₃·5H₂O was 312.84 $\frac{1}{kg}$, price of C₆H₈O₇·H₂O was 109.8 $\frac{1}{kg}$, price of HNO₃ was 141.3 $\frac{1}{kL}$, price of NaOH was 118.44 $\frac{1}{kg}$, prices correspond to the Chinese market.

Sample	Chemicals Cost (¥/kg)	Energy Cost (¥/kg)	Total Cost (¥/kg)
Bi-BOC/BO-OVs	1103.21	31.64	1134.85

As shown in Table S5, We calculated the cost required to manufacture 1kg product based on the price in the Chinese market (laboratory level). In the calculation, the yield of 65.51% was taken according to the actual situation. It can be seen that nitric acid takes a large proportion of the total cost. In the work, the role of nitric acid is to help the hydrolysis of Bi(NO₃)₃·5H₂O and adjust the pH for morphology control. Owing to morphology control is not the main reason for the improvement of the catalytic efficiency of Bi-BOC/BO-OVs, the amount of nitric acid can be appropriately reduced to reduce production costs in the actual production process. Furthermore, considering the large amount used in the real environment, the actual production cost will be further reduced.

Table S6. The rhizomes length of soybean seedlings under the solution of different concentrations of catalyst, before reation (A) and after 60 min irradiation (B).

	0	10	20	40	60	100	Α	В
Rhizomes	143.18	143.52	144.13	143.63	142.78	141.85	137.06	145.46
Length (mm)								

Catalyst concentration		_		
	n	x±s	F	Р
(mg/L)				
0	5	143.17±0.75		
10	5	143.52 ± 0.43		
20	5	144.13 ± 0.61	2 010	0.01~0.05
40	5	143.63±0.53	3.910	0.01<0.03
60	5	142.78 ± 0.66		
100	5	141.84±0.94		

 Table S7. The relationship of catalyst concentration and rhizomes by one-way

 ANOVA.

Table S8. Chemical structure of the TC and its by-products.

C I	Molecular	Retention	
Compound	weight	time (min)	Chemical structure
TC	444		H_{0}
P1	416	11.28	HO OH OH OH OH OH OH OH OH OH OH OH OH
P2	337	18.72	HO OH OH OH OH OH OH OH OH OH OH OH OH
Р3	476	17.89	HO OH OH OH OH OH OH OH OH OH OH OH OH O

 Table S9. Scavengers used, RSs quenched, and photocatalytic efficiency with

 quenched reactive species during the photocatalytic TC degradation process.

Quencher	RSs	k _{obs} (min ⁻¹)	Photocatalytic efficiency
----------	-----	---------------------------------------	---------------------------

	Quenched		(%)
Blank(TC)	\	0.033	100
IPA	•OH	0.027	81.8
MeOH	h^+	0.018	54.5
His	$^{1}O_{2}$	0.026	78.8
TEMPOL	O2*-	0.002	6.06
O ₂	\	0.0309	145.5
N_2	O ₂	0.008	66.7

Fig S1. (a) XRD spectrum and (b) UV-vis DRS spectra of Bi-BOC/BO-OVs system calcined at different temperatures.

Fig. S2. (a) Ex-situ/ in-situ irradiated XPS spectra of C1s. (b) High-resolution XPS spectra of Bi 4f. (c) FT-IR spectrum and (d) Raman spectra of BOC, BO, and Bi-BOC/BO-OVs.

Fig S3. Adsorption for TC in the darkness of (a) different samples, (b) different photocatalyst concentrations and (c) different pH of Bi-BOC/BO-OVs. (d) Self-degradation of TC at different pH without catalyst.

Fig S4. (a) Zeta potential of Bi-BOC/BO-OVs. (b) Species distribution of tetracycline under different pH.

Fig S5. Leakage of Bi ions in the Bi-BOC/BO-OVs system.

Fig S6. The mineralization of tetracycline during Bi-BOC/BO-OVs photocatalytic degradation process under visible light.

Fig S7. Fragment chart analyses of the UHPLC-HRMS secondary ion mass spectrometry of the TC and its by-products.

Fig. S8. (a) Photocatalytic activity using different scavengers (TPA, MeOH = 3 mL, His=0.069 g, TEMPOL = 0.078 g). (b) O₂-TPD spectra of BOC/BO and Bi-BOC/BO-OVs.

Reference

1. X. Yang, Y. Wang, N. He, W. Wan, F. Zhang, B. Zhai and P. Zhang, One-step hydrothermal synthesis of hierarchical nanosheet-assembled Bi2O2CO3 microflowers with a {001} dominant facet and their superior photocatalytic performance, *Nanotechnology*, 2020, **31**, 375604.

2. P. Chen, H. Liu, Y. Sun, J. Li, W. Cui, L. a. Wang, W. Zhang, X. Yuan, Z. Wang, Y. Zhang and F. Dong, Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement, *Applied Catalysis B: Environmental*, 2020, **264**, 118545.

3. S. Yu, Y. Zhang, F. Dong, M. Li, T. Zhang and H. Huang, Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance, *Applied Catalysis B: Environmental*, 2018, **226**, 441-450.

4. W. Hou, H. Xu, Y. Cai, Z. Zou, D. Li and D. Xia, Precisely control interface OVs concentration for enhance 0D/2D Bi2O2CO3/BiOCl photocatalytic performance, *Applied Surface Science*, 2020, **530**, 147218.

5. C. Lai, F. Xu, M. Zhang, B. Li, S. Liu, H. Yi, L. Li, L. Qin, X. Liu, Y. Fu, N. An, H. Yang, X. Huo, X. Yang and H. Yan, Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: Photodegradation of tetracycline and photocatalytic mechanism, *Journal of Colloid and Interface Science*, 2021, **588**, 283-294.

6. H. Zhou, S. Zhong, M. Shen and Y. Yao, Composite soft templateassisted construction of a flower-like β -Bi2O3/Bi2O2CO3 heterojunction photocatalyst for the enhanced simulated sunlight photocatalytic degradation of tetracycline, *Ceramics International*, 2019, **45**, 15036-15047.

7. H. Zhao, G. Li, F. Tian, Q. Jia, Y. Liu and R. Chen, g-C3N4

surface-decorated Bi2O2CO3 for improved photocatalytic performance: Theoretical calculation and photodegradation of antibiotics in actual water matrix, *Chemical Engineering Journal*, 2019, **366**, 468-479.

8. S. Li, S. Hu, W. Jiang, Y. Liu, Y. Liu, Y. Zhou, L. Mo and J. Liu, Ag3VO4 Nanoparticles Decorated Bi2O2CO3 Micro-Flowers: An Efficient Visible-Light-Driven Photocatalyst for the Removal of Toxic Contaminants, *Frontiers in Chemistry*, 2018, **6**.