Supplementary Information

UV-B radiation enhances the toxicity of TiO₂ nanoparticles to the marine microalga *Chlorella pyrenoidosa* by disrupting the protection

function of extracellular polymeric substances

Lin Zhu,^{ab} Andy M. Booth,^d Sulan Feng,^a Congcong Shang,^{ac} Hui Xiao,^c Xuexi Tang,^{*cb} Xuemei Sun,^{ab} Xinguo Zhao,^{ab} Bijuan Chen,^{ab} Keming Qu^a and Bin Xia^{*ab}

^aYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China

^bLaboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China

°College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China

dSINTEF Ocean, Department of Climate and Environment, Trondheim, 7465, Norway

*Corresponding author.

E-mail address: xiabin@ysfri.ac.cn (B. Xia); tangxx@ouc.edu.cn (X. Tang)

Supporting Text

Text 1. Acute toxicity tests with single and combined stressor

To perform exposure experiments, algal cells at the exponential phase of growth were inoculated in fresh f/2 medium at a cell density of 1.0×10^5 cells·mL⁻¹. An appropriate volume of the 10 g·L⁻¹ TiO₂ NPs stock dispersion was added to the algae containing medium to achieve the final working concentrations of TiO₂ NPs dispersion for each specific experiment. The exposure experiments were started simultaneously with a 12:12 light-dark cycle and the UV-B irradiation was applied in addition at the beginning of each photoperiod. Algal cultures were provisionally transferred to petri dishes when they were exposed to UVBR and this would bring the algal cultures into contact with UVBR. After irradiation, the algal cells were subsequently cultured in 250 mL flasks containing 125 mL of culture media. The cultures in flasks were shaken three times per day.

The exposure concentrations of TiO_2 NPs in the single stress test (no UVBR) were set at 0, 20, 40, 80, 120 and 160 mg·L⁻¹. The UV-B exposure durations in the single stress test (no TiO₂ NPs) were 30, 60, 240, 480 and 720 min per day, which equivalent to a UV-B dose of 0.18, 0.36, 1.44, 2.88 and 4.32 kJ·m⁻²·d⁻¹), respectively. After a 96 h exposure to the above treatments, the algal cell densities in each sample were counted using a light microscope (BX-51, Olympus, Japan) and the inhibition rate (IR) was calculated as follows: $IR(\%) = (N_c - N_t)/Nc \times 100\%$, where N_c and N_t are the average cell densities (cells·mL⁻¹) in the controls and treatments, respectively. Cell counting was used to quantify algae growth to overcome shading issues associated with other techniques.¹ The effective concentration of TiO₂ NPs or dose of UVBR leading to a 50% algal growth reduction compared to the control in the single stress tests (s- EC_{50} /s- ED_{50}), was calculated from the concentration/dose-response curves. The results of the single stress tests were used to inform the exposure conditions in the combined stress tests, where $s-EC_{50}$ or $s-ED_{50}$ was set as one Toxic Unit according to Brow¹ and Sprague² and where the TiO₂ NPs concentration and the UVBR dose were set as an equal toxicity ratio. The concentration of TiO₂ NPs was 0.150 s-EC₅₀, 0.225 s-EC₅₀, 0.300 $s-EC_{50}$, 0.375 $s-EC_{50}$ and 0.450 $s-EC_{50}$, and the corresponding UV-B doses were 0.150 $s-ED_{50}$, 0.225 s-ED₅₀, 0.300 s-ED₅₀, 0.375 s-ED₅₀ and 0.450 s-ED₅₀. Then the effective concentration/dose values leading to a 50% algal growth reduction in the combined stress tests (c-EC₅₀/c-ED₅₀) were calculated.

References:

- 1 J. Farkas and A. M. Booth, Are fluorescence-based chlorophyll quantification methods suitable for algae toxicity assessment of carbon nanomaterials? *Nanotoxicology*, 2017, **11**, 569–577.
- 2 V. M. Brown, The calculation of the acute toxicity of mixtures of poisons to rainbow trout, *Water Res.*, 1968, **2**, 723–733.
- 3 J. B. Sprague, Measurement of pollutant toxicity to fish. ii. Utilizing and applying bioassay results, *Water Res.*, 1970, **4**, 3–32.

Physicochemical characteristic	Source	Result
Primary particles size	Transmission electron microscopy (TEM;	21.4±2.9 nm
	JEM-1200EX, JEOL, Japan)	
Purity	Manufacturer	≥99.5%
BET surface area	Micromeritics ASAP 2460 analyzer (USA)	51.10 m ² /g
Crystalline structure	X-ray diffractometer (XRD; SmartLab	Anatase: 89.45%
	Rigaku, Japan)	Rutile: 10.55%

Table S1. Physicochemical characteristics of TiO₂ nanoparticles.

Table S2. Characteristics of sterile filtered seawater.

Characteristic	Source	Result
Ionic strength	Multi-parameter water quality analyzer	7.10±0.01 mol·L ⁻¹
	(ProPlus, YSI, USA); Convert from	
	conductivity	
Salinity	Multi-parameter water quality analyzer	31.63±0.10 ‰
	(ProPlus, YSI, USA)	
pH	pH meter (PB-10, Sartorius, Germany)	8.26 ± 0.02
Natural organic matter	TOC analyzer (TOC-V CPN analyzer,	1.45±0.01 mg·L ⁻¹
	Shimadzu, Japan)	

Table S3. Hydrodynamic diameters of TiO₂ nanoparticles in seawater under different treatments over a 24 h period.

Treatment	LT	LUT	HT	HUT
0 h	1420.38±31.92 ^A	1411.01 ± 53.24 ^A	1808.86±41.29 ª	1803.26±34.00 ª
0.5 h	$1535.84{\pm}66.04$ ^A	$1395.98{\pm}70.04^{\rm A}$	1791.23±92.31ª	1762.24±21.67 ª
1 h	1532.70 ± 35.16^{A}	$1390.86{\pm}28.67^{\rm \ B}$	1863.88±64.12 ª	1721.43±44.97 ^b
1.5 h	1682.24 ± 14.94 ^A	$1403.04{\pm}54.01^{\rm \ B}$	1758.85±37.13 ª	1648.63±55.22 ^b
2 h	1730.39 ± 38.40 ^A	$1410.53{\pm}51.69^{\rm \ B}$	1743.55±54.14 ª	1624.60±31.35 ^b
4 h	$1753.77{\pm}65.00^{\rm \;A}$	$1550.05{\pm}38.04^{\rm \ B}$	1736.82±49.09 ª	1398.37 ± 43.52^{b}
6 h	1610.68 ± 22.88 ^A	1496.94 ± 77.63 ^A	1407.24±67.95 ª	1497.23±16.16 ª
8 h	1283.03 ± 39.41 ^A	$1301.84{\pm}11.56$ ^A	1300.96±42.73 ª	1268.96±43.82 ª
12 h	$1056.51{\pm}23.18^{\rm \ A}$	$1050.07{\pm}31.24^{\rm A}$	1227.31±32.37 ª	1153.94±57.79 ª
24 h	$1034.34{\pm}50.00$ ^A	$1039.34{\pm}38.90{}^{\rm A}$	1022.60±25.35 ª	1055.53±20.71 ª

Index	Source	df	UV	TiO ₂	UV*TiO ₂
			1	1	1
Ti	Н	MS	32.898	0.303	0.290
		F	3181.506	29.308	28.091
		р	< 0.001	0.001	0.001
EPS	Н	MS	8.111	35.498	18.732
		F	5.993	26.228	13.840
		р	0.031	< 0.001	0.003
Intracellular ROS	L	MS	5.279	121.241	4.607
		F	40.835	937.877	35.635
		р	< 0.001	< 0.001	<0.001
	Н	MS	37.613	1463.971	37.570
		F	96.201	3744.391	96.093
		р	< 0.001	< 0.001	<0.001
MDA	L	MS	9.915	3.972	4.941
		F	53.246	21.330	26.533
		р	< 0.001	0.002	0.001
	Н	MS	63.964	23.205	17.139
		F	280.729	101.842	75.219
		р	< 0.001	< 0.001	<0.001
ABS/CS ₀	Н	MS	5.022106	2.217×10^{7}	4.538×10 ⁵
		F	91.292	403.054	8.250
		р	< 0.001	< 0.001	0.021

Table S4. Two-way ANOVA summary on interactive effects of UVBR and TiO₂ nanoparticles on Ti contents, EPS contents, intracellular ROS levels, MDA contents and ABS/CS₀ values of *Chlorella pyrenoidosa*.

Fig. S1. TEM images (A) and XRD spectrum (B) of TiO₂ NPs.

Fig.S2. Acute toxic effects of single TiO₂ nanoparticles (A) or UVBR (B) and their combination

(C) on *C. pyrenoidosa* after 96-h exposure.

Fig.S3. Sedimentation (A) and z-average diameter kinetics (B) of TiO₂ NPs in f/2 medium under different treatments over a 24 h period (n=3). Different uppercase letters (A–B) indicate significant differences between the 15 mg·L⁻¹ TiO₂ NPs treatments before and after exposure to UVBR (p < 0.05). Different lower case letters (a–b) denote significant differences between the 35 mg·L⁻¹ TiO₂ NPs treatments before and after exposure to UVBR (p < 0.05).

Fig. S4. Interaction plots show interaction between UVBR and TiO₂ NPs on cellular Ti contents (A), EPS contents (B), intracellular ROS levels (D), MDA contents (F) and ABS/CS₀ values (G) of *C. pyrenoidosa* cells from high combined treatments, and intracellular ROS levels (C) and MDA contents (E) of algal cells from low combined treatments.

Fig. S5. TEM images of *C. pyrenoidosa* cells treated with 35 mg·L⁻¹ TiO₂ NPs (HT; A). The magnification from (A) marked with blue square frame is shown in (B), where the blue arrow indicates an endocytic vesicle.