Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information:

Membrane fouling characteristics of membrane bioreactor (MBR) under salinity shock: Extracellular Polymeric Substances (EPS) and optimization of operating parameters

Ling Luo^a, Hui Zhong^a, Wenwang Zhou^a, Ye Yuan^a and Changming Zhong^{a, b*}

^a College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

^b Key Laboratory of Environmental Pollution Control of Mining and Metallurgy in Jiangxi Province,
Ganzhou 341000, China

*Corresponding Author's E-mail: chmzhong666@163.com; Phone:13576755757; Address: College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

★ EPS extraction method

EPS can be divided into soluble EPS (S-EPS, or SMP) and adhesive EPS (B-EPS), and the latter can be divided into loosely attached EPS (LB-EPS) and tightly attached EPS (TB-EPS). Using heating extraction method, the steps are as follows:

At the end of each experimental stage, 10 mL of sludge adhered to the membrane was enriched, added with 0.01 M NaCl buffer solution and centrifuged at 4 °C 550 r/min for 15 min, and the supernatant was filtered through 0.45 μ m organic microfiltration Membrane to obtain the SMP solution; add 0.01 M NaCl buffer to the remaining sludge to resuspend to the original volume, sonicate for 2 min, centrifuge at 4 °C 9000 r/min for 20 min, the supernatant is over 0.45 μ m organic LB-EPS is obtained by the microporous filter membrane; then add 0.01 M NaCl to the remaining sludge to resuspend the weight to the original volume, heat in a water bath at 70 °C for 40 min, and cool to room temperature at 4 °C at 20000 r/min Centrifuge for 20 min, and pass the supernatant through a 0.45 μ m organic microporous membrane to obtain TB-EPS. At the same time, the concentration of sludge VSS was measured.

☆ Optimize the design of experimental operating parameters

The intermittent filtration cycle of the fixed reactor was continuous water output for 4 min, stop pumping for 1 min. When HRT was used as a variable, the fixed C/N was 3: 1, DO was 3.5 - 4.5 mg/L; When C/N was variable, fixed HRT was 24.0 h, DO was 2.0 - 3.0 mg/L; when DO was variable, fixed HRT was 24.0 h, C/N was 5:1. When the system runs stably under the conditions of various operating parameters, start membrane fouling rate determination experiment, and finally determine the content of extracellular secretions.

Table S1 Optimized test operation parameter design

Table 31 Optimized test operation parameter design							
Operating parameters	I	П	Ш				
HRT /(h) (C/N = 3:1, DO = 3.5 ~ 4.5 mg/L)	12.0	16.0	24.0				
C/N (HRT = 24.0 h, DO = 2.0 $^{\sim}$ 3.0 mg/L)	3:1	5:1	8:1				
DO /(mg/L) (HRT = 24.0 h, C/N = 5:1)	0.5 ~ 1.5	2.0~3.0	3.5 ~ 4.5				

★ MBR system operating efficiency during salinity acclimation

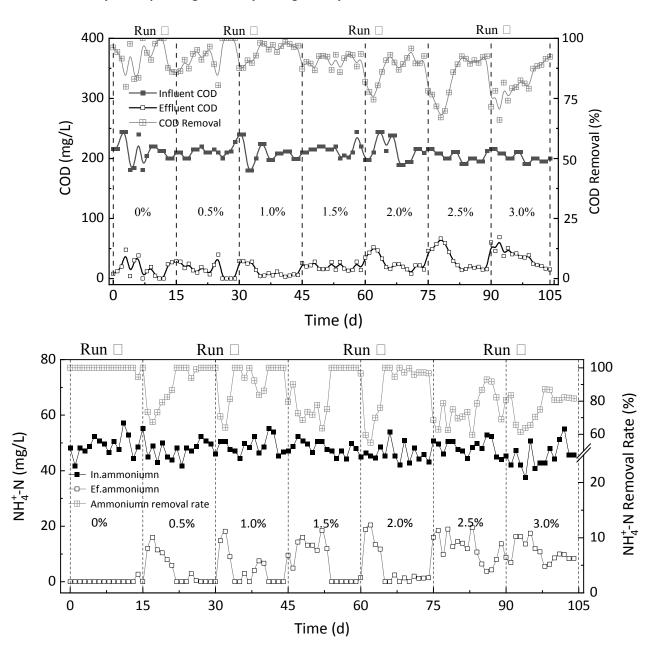


Fig.S1 Evolution of COD and $\mathrm{NH_4}^+\text{-}\mathrm{N}$ in the reactor

☆ Correlation analysis between EPS and TMP

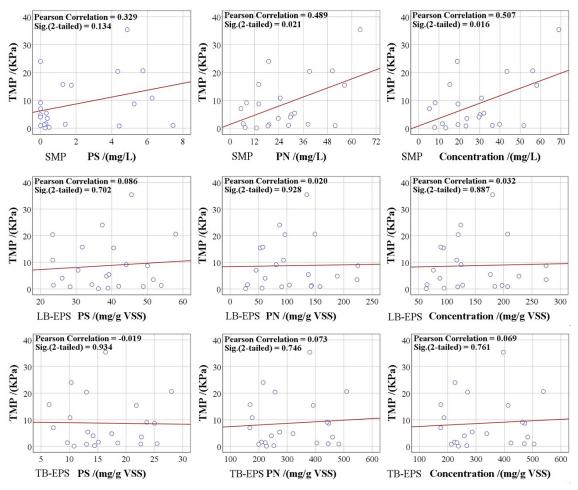


Fig.S2 EPS and TMP correlation analysis

Table S2 Surface Energy Spectrum Analysis of MBR Membrane under Different Salinity

Weight (%)						E	lements						
Salinity (%)	С	0	F	Р	Na	К	Ca	Fe	Al	Si	S	Zn	Mg
New Membrane	66.76	16.09	16.27	0.88	-	-	-	-	-	-	-		
0	44.91	37.27	-	3.96	0	0.67	1.15	3.26	3.53	3.75	0.37	0.69	0.43
1.0	55.17	28.2	-	2.9	1.7	0.97	0.54	3.37	2.5	3.26	1.39	-	-
2.0	55.48	19.92	10.25	0.76	1.97	0.59	0.61	3.41	2.17	3.15	0.31	0.86	0.52
3.0	57.43	24.17	7.87	2.61	1.04	0.39	0.64	2.85	0.96	1.73	0.31	-	-

Table S3 Fluorescence spectral parameters of SMP and EPS under different salinity

Samples	Salinity (%)	Peak A (A ₁) (nm)	Intensity	Peak B (nm)	Intensity	Peak C (nm)	Intensity	Peak D (A ₂) (nm)	Intensity		
	0		25.74		7.18		2.35		5.56		
CNAD	1.0 SMP 2.0	42.16		8.8		5.00		/			
SIVIP			25.11		9.87		1.66		4.70		
	3.0		21.73		9.34		/	Ex:270-280 Em:410-450	6.57		
	0				2.45		1.08		2.06		
ID EDC	1.0	Ex:270-280	20.38	Ex:310-360	/	Ex:220-230	/		/		
TR-EN2	LB-EPS 2.0 Em:300-310	22.86	Em:400-450	3.56	Em:300-310	1.57		2.35			
	3.0		22.65 129.01	22.65	22.65		9.74		/		7.82
	0				40.20		16.60	(285/355)	207.50		
TD FDC	1.0		134.72		42.67		17.53		173.15		
TB-EPS	2.0		22.78		3.54		1.57		/		
	3.0		/		42.46		11.43		145.35		
Composition High excitation light tyrosine protein [1]		Humic acid-like organics ^[2]		Low excitation light tyrosine protein [1,2]		Fulvic acid-like organics (Tryptophan-like protein ^[3,4])					

Table S4 Response surface test factors and level values

Foston		Factor level			
Factors	Code	-1	0	1	
HRT /(h)	А	12	16	24	
C/N	В	3	5	8	
DO /(mg/L)	С	1	2.5	4	

Table S5 Response surface test results

		1 abite 33	nesponse surrace	test results	
–	Actual value	of independent	variable level	Membrane	Ammonia removal
Number	Α	В	С	fouling rate $ K_{\overline{I}} $	efficiencyR.E / (%)
1	12	5	4	1.011E+13	39.4
2	16	5	2.5	4.175E+12	83.4
3	16	5	2.5	3.892E+12	83.2
4	24	3	2.5	7.091E+12	84.8
5	16	5	2.5	4.089E+12	83.2
6	12	5	1	8.839E+12	38.6
7	24	5	4	1.032E+13	85.7
8	12	8	2.5	7.765E+12	40.6
9	16	3	4	4.21E+12	84.2
10	12	3	2.5	4.343E+12	40.3
11	16	5	2.5	4.005E+12	84.5
12	16	8	1	4.672E+12	73.5
13	24	5	1	1.001E+13	72.6
14	16	5	2.5	4.31E+11	83.6
15	16	8	4	4.341E+12	85.6
16	24	8	2.5	1.41E+13	84.8
17	16	3	1	3.65E+12	72.3

Table S6 Analysis of variance of the cubic model of membrane fouling rate $\left|K_{\overline{J}}\right|$

Source	Sum of Squares	Df	Mean Square	F-Value	P-Value	
Model	1.601E+26	12	1.334E+25	523.26	< 0.0001	significant
A-HRT	7.226E+23	1	7.226E+23	28.35	0.0060	
B-C/N	3.149E+23	1	3.149E+23	12.35	0.0246	

C-DO	1.359E+22	1	1.359E+22	0.5332	0.5057	
Continued						
АВ	3.217E+24	1	3.217E+24	126.18	0.0004	
AC	2.309E+23	1	2.309E+23	9.06	0.0396	
ВС	1.985E+23	1	1.985E+23	7.79	0.0493	
A^2	8.541E+25	1	8.541E+25	3350.50	< 0.0001	
B ²	1.823E+24	1	1.823E+24	71.52	0.0011	
C ²	6.918E+24	1	6.918E+24	271.37	< 0.0001	
A^2B	7.736E+24	1	7.736E+24	303.46	<0.0001	
A^2C	2.595E+23	1	2.595E+23	10.18	0.0335	
AB^2	5.979E+24	1	5.979E+24	234.24	0.0001	
Pure Error	1.020E+23	4	2.549E+22			
Cor Total	1.602E+26	16				

 $R^2 = 0.9994$, $R_{Attacl}^2 = 0.9975$; Since the regression analysis uses a confidence level of 95%, P < 0.01 indicates that the interaction is extremely significant, P < 0.05 indicates that the interaction is not significant.

Table S7 Variance analysis of the third model of ammonia nitrogen removal efficiency (R.E)

Source	Sum of Squares	Df	Mean Square	F-Value	P-Value	
Model	5690.72	12	474.23	1624.06	< 0.0001	significant
A-HRT	1411.69	1	1411.69	4834.55	< 0.0001	
B-C/N	1.35	1	1.35	4.64	0.0976	
C-DO	156.80	1	156.80	537.00	< 0.0001	
АВ	0.0225	1	0.0225	0.0771	0.7951	
AC	37.82	1	37.82	129.53	0.0003	
ВС	0.0100	1	0.0100	0.0342	0.8622	
A^2	2943.57	1	2943.57	10080.73	< 0.0001	
B^2	0.3165	1	0.3165	1.08	0.3566	
C^2	56.85	1	56.85	194.70	0.0002	
A^2B	0.5732	1	0.5732	1.96	0.2338	
A^2C	23.30	1	23.30	79.80	0.0009	
AB ²	8.77	1	8.77	30.04	0.0054	
Pure Error	1.17	4	0.2920			
Cor Total	5691.88	16				

 R^2 = 0.9998, R_{Aigst}^2 = 0.9992; Since the regression analysis uses a confidence level of 95%, P < 0.01 indicates that the interaction is extremely significant, P < 0.05 indicates that the interaction is not significant.

Reference

- [1] Peng Zhu Z H, Huimin Li. PARAFAC Method Used for Analysis of Three-Dimensional Fluorescence Spectra of DOM in Taihu Lake[J]. Spectroscopy and Spectral Analysis, 2013, 33(06): 1619-1625.
- [2] Gao P, Guo L, Sun J, et al. Enhancing the hydrolysis of saline waste sludge with thermophilic bacteria pretreatment: New insights through the evolution of extracellular polymeric substances and dissolved organic matters transformation[J]. Science of the Total Environment, 2019, 670.
- [3] Zhang Z-J, Chen S-H, Wang S-M, et al. Characterization of extracellular polymeric substances from biofilm in the process of starting-up a partial nitrification process under salt stress[J]. Applied Microbiology and Biotechnology, 2011, 89(5).
- [4] Shao Y, Zhang H, Buchanan I, et al. Comparison of extracellular polymeric substance (EPS) in nitrification and nitritation bioreactors[J]. International Biodeterioration & Biodegradation, 2019, 143: 104713.