Supporting information

Architecting a Janus biomass carbon/sponge evaporator with salt-

rejection and easy-floatation for sustainable solar-driven steam

generation

Keyuan Xu,^a Chengbing Wang,^{a,b*} Zhengtong Li,^a Xinyue Yan,^a Xueyang Mu,^a

Miaomaio Ma,^a Pengkui Zhang^a

K. Xu, Prof. C. Wang, Z. Li, X. Yan, X. Mu, M. Ma, P. Zhang

^a School of Materials Science and Engineering, Shaanxi Key Laboratory of Green

Preparation and Functionalization for Inorganic Material, Shaanxi University of

Science & Technology, Xi'an, Shaanxi 710021, China

^b Zhejiang Wenzhou Research Institute of Light Industry, Wenzhou 325003, Zhejiang,

1

P. R. China.

Email: wangchengbing@gmail.com

Figure S1. Digital photos of steam generated under 3 solar irradiation of JBCS.

Figure S2. Absorption spectrum of JBCS before and after 12 h steam generation under 1 sun irradiation.

Figure S3. Camera photos of MS before and after 180 min solar steam generation (1 kW m⁻²).

Figure S4. The measured concentrations of four primary ions in a simulated seawater sample before and after desalination.

The energy contribution of each part of the JBCS evaporator in the steam generation process.

(1) Water evaporation loss θ_1

The water evaporation loss of JBCS is approximately equal to the evaporation efficiency, so θ_{1} = 86.5%.

(2) Sunlight reflection loss θ_2

Measured by UV spectrophotometer, $\theta_2 = 4\%$.

(3) Conduction loss θ_3

$$\theta_3 = (J_{cond} / J_{in}) \cdot A$$

Calculated according to Fourier's law, $J_{cond} = k \cdot (\Delta T/L)$, k represents the thermal conductivity of the evaporator, which is 0.046 W m⁻¹ K⁻¹. $\Delta T/L$ is the temperature gradient

of the JBCS evaporator, about 842 K/m. J_{in} represents a standard sunlight, which is 1 kW m⁻². After many statistical calculations, A is about 8. It can be seen that θ_3 is approximately 3.1%.

(4) Radiation loss θ_4

 $\theta_4 = A \ \varepsilon \ \sigma \ (T_1^4 - T_2^4)$, $\varepsilon = 0.92$, $\sigma = 5.67 \times 10^{-8} \ W \ m^{-2} \ K^{-4}$, T_1 is the average surface temperature of the evaporator under one sun exposure, about 310 K, T_2 is the ambient temperature (301 K), in result, $\theta_4 = 4.3\%$.

(5) Convection loss θ_5

$$\theta_5 = h A \Delta T$$
, $h=5 \text{ W m}^{-2} \text{ K}^{-1}$, $\Delta T = 310 \text{ K}$. Thus, $\theta_5 = 1.3\%$.

Therefore, 86.5% + 4% + 3.1% + 4.3% + 1.3% = 99.2%, other 0.8% of energy may disappear in other forms of diffusion.