Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Nuclear Magnetic Resonance Enables Understanding of PolyDiallyldimethyl Ammonium Chloride

Composition and N-Nitrosodimethylamine Formation During Chloramination

Samantha Donovan ^a, Ariel J Atkinson ^b, Natalia Fischer ^b, Amelia E Taylor^c, Johann Kieffer^d, JP Croue^e, Paul

Westerhoff ^b, Pierre Herckes ^a

^aSchool of Molecular Sciences, Arizona State University, Tempe, Arizona, USA

^bSchool of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona,

USA

In preparation for: Environmental Science: Water Research and Technology

Figure **S1** shows the ¹H-NMR spectra of three additional commercially available polyDADMAC solutions. The commercial polymer solutions were characterized via ¹H-NMR, confirming that they have the same general structure, and smaller oligomers can also be seen.

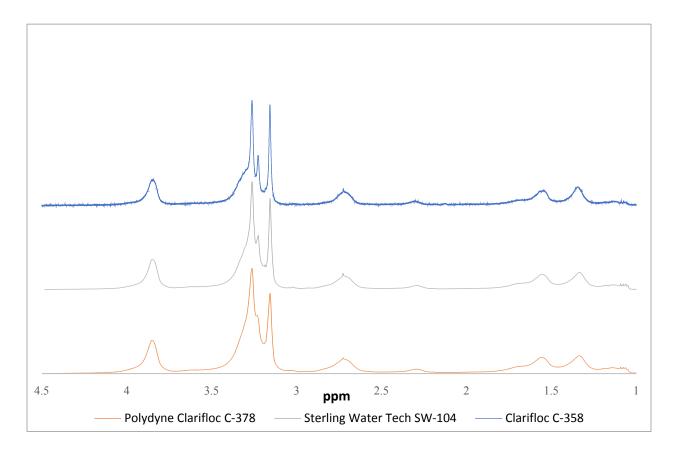


Figure SI1: ¹H-NMR spectra of three commercial polyDADMAC solutions.

Figure SI2 shows the reference ¹H-NMR spectra for these impurity and precursor low molecular weight compounds. The spectra reveal that the peaks at 2.73 ppm correspond to DMA while the peaks at 1-1.20 ppm are indicative of oligomers. ADMA and DADMAC were not readily observed in the spectra.

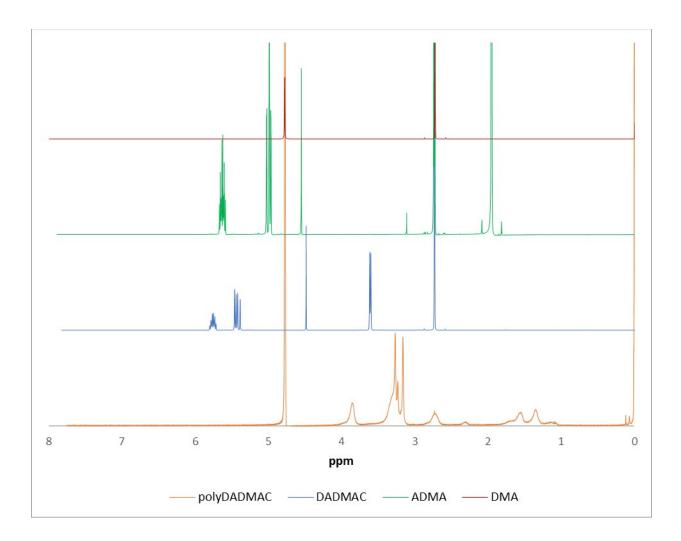


Figure SI 2: ¹H-NMR spectra of a commercial polyDADMAC solution, DADMAC, ADMA, and DMA.