## **Supporting Information**

## Electron transfer mechanism of peroxydisulfate activation by sewage sludge-derived biochar for enhanced sulfamethoxazole degradation

Xuan-Yuan Pei, Hong-Yu Ren\*, De-Feng Xing, Guo-Jun Xie, Guang-Li Cao, Jia

Meng, Nan-Qi Ren, Bing-Feng Liu\*

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China

<sup>\*</sup> Corresponding author address: P. O. Box 2614, 73 Huanghe Road, Harbin 150090, China. Tel./Fax: +86 451 86282008.

E-mail addresses: lbf@hit.edu.cn (B.-F. Liu); rhy@hit.edu.cn (H.-Y. Ren)

Table S1 The parameters and calculation results of steady-state kineticsexperiment

| Parameters                                    | values                                          |
|-----------------------------------------------|-------------------------------------------------|
| k<br>2, <sup>1</sup> O <sub>2</sub> ,SMX      | $2 \times 10^{4} \text{ M}^{-1} \text{ s}^{-1}$ |
| k 1, <sup>1</sup> O <sub>2</sub> ,water       | 2.5×10 <sup>5</sup> s <sup>-1</sup>             |
| k2, <sup>1</sup> 02,FFA                       | $1.2 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ |
| [SMX]                                         | 0.01 mM                                         |
| [FFA]                                         | 0.05 mM                                         |
| $\begin{bmatrix} 1 \\ O_2 \end{bmatrix}_{ss}$ | 2.1×10 <sup>-12</sup> M                         |
| f <sub>1</sub> <sub>02</sub> ,smx             | 8×10 <sup>-6</sup>                              |
| R <sub>1</sub> <sub>O2</sub> ,SMX,formation   | 5.4×10 <sup>-7</sup> M s <sup>-1</sup>          |



**Fig. S1** The nitrogen adsorption-desorption isotherms of biochar samples in different pyrolysis temperatures.



**Fig. S2** EDS images of BC400 (**a**), BC600 (**b**) and BC800 (**c**).



**Fig. S3** The adsorption capacity of biochar samples (a); stability and reusability of BC800 for the degradation of SMX (b). Conditions:  $[SMX] = 10 \mu M$ , [PDS] = 1 mM,  $[BC800] = 0.75 \text{ g L}^{-1}$ , initial pH=7.0, T=25 °C.



**Fig. S4** SMX and main intermediate products of SMX during the treatment process detected by QTOF, SMX (a), TP-1 (b), TP-2 (c), TP-3 (d), TP-4 (e).