Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Amyloid-Fibril Based Membrane for PFAS Removal from Water

Tonghui Jin¹, Mohammad Peydayesh¹, Hanna Joerss^{2,3}, Jiangtao Zhou¹, Sreenath Bolisetty⁴, and Raffaele Mezzenga^{1,5*}

¹ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland
²Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck-Str. 1,
²1502 Geesthacht, Germany
³Universität Hamburg, Institute of Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6,
20146 Hamburg, Germany

⁴BluAct Technologies GmbH, Schmelzbergstrasse 9, 8092 Zurich, Switzerland

⁵ETH Zurich Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland.

Analyte	Acronym	n	Structure		
perfluoroalkyl carboxylic acids (PFCAs)					
perfluorobutanoic acid	PFBA	3			
perfluoropentanoic acid	PFPeA	4			
perfluorohexanoic acid	PFHxA	5			
perfluoroheptanoic acid	PFHpA	6	general structure: $C_n F_{2n+1}$ COOH n < 7: short-chain		
perfluorooctanoic acid	PFOA	7	$n \ge 7$: long-chain exemplary structure: PEOA		
perfluorononanoic acid	PFNA	8	F, F, F, F, F, F = 0		
perfluorodecanoic acid	PFDA	9	F OH		
perfluoroundecanoic acid	PFUnDA	10	F F F F F F F		
perfluorododecanoic acid	PFDoDA	11			
perfluorotridecanoic acid	PFTrDA	12			
perfluorotetradecanoic acid	PFTeDA	13			
perfluoroalkane sulfonic acids (PFSAs)				
perfluorobutane sulfonic acid	PFBS	4	general structure: $C_n F_{2n+1} SO_3 H$		
perfluorohexane sulfonic acid	PFHxS	6	$n \ge 6$: long-chain $n \ge 6$: long-chain		
perfluoroheptane sulfonic acid	PFHpS	7	exemplary structure: PFOS F, F F, F F, F F, F		
perfluorooctane sulfonic acid	PFOS	8	F S S		
perfluorodecane sulfonic acid	PFDS	10	F F F F F F F O		
precursors to PFCAs and PFSAs					
4:2 fluorotelomer sulfonic acid	4:2 FTSA	4	general structure: C _n F _{2n+1} CH ₂ CH ₂ SO ₃ H exemplary structure: 6:2 FTSA		
6:2 fluorotelomer sulfonic acid	6:2 FTSA	6	$F \xrightarrow{F} F \xrightarrow{F} F \xrightarrow{F} F \xrightarrow{F} H \xrightarrow{H} H$		
8:2 fluorotelomer sulfonic acid	8:2 FTSA	8			
perfluorooctane sulfonamide	FOSA	-	F F F F F F F O F F F F F F F O F F F F		

Table S1: Chemical structures of perfluoroalkyl carboxylic and sulfonic acids as well as precursors chosen as contaminants in spiked MilliQ water.

Table S2: Chemical structures of replacement compounds and/or overlooked PFASs chosen as target analytes. The name and the structure of the free acid are given, whereas the measured form is the anion.

Common name	Acronym	Structure	Class			
Per- and polyfluoroalkyl ether carboxylic acids (PFECAs)						
4,8-dioxa-3 <i>H</i> - perfluorononanoic acid	DONA		replacement			
hexafluoropropylene oxide dimer acid	HFPO- DA		replacement			
hexafluoropropylene oxide trimer acid	HFPO- TrA	$F = F = F = CF_3 = O$ $F = F = F = F = CF_3$	replacement			
hexafluoropropylene oxide tetramer acid	HFPO- TeA	F F F F CF ₃ O F F F F CF ₃ O F F F F CF ₃ F F F CF ₃	replacement			
Per- and polyfluoroalkyl ether s	ulfonic acids	(PFESAs)				
6:2 chlorinated polyfluoroalkyl ether sulfonic acid	6:2 Cl- PFESA		overlooked			
8:2 chlorinated polyfluoroalkyl ether sulfonic acid	8:2 Cl- PFESA	CI F F F F F F F F F F F O F F F F F F F F	overlooked			
perfluoroalkyl phosphinic acids (PFPiAs)						
bis(perfluorohexyl) phosphinic acid	6:6 PFPiA	F F F F F F F F F F F F F F F F F F F	overlooked			
perfluorohexylperfluorooctyl phosphinic acid	6:8 PFPiA	F F F F F F F F F F F F F F F F F F F	F F overlooked			
Cyclic perfluoroalkane sulfonic acids (cyclic PFSAs)						
perfluoro-4-ethylcyclohexane sulfonic acid	PFECHS	F F F F F F F F F F F F F F F F F F F	overlooked			

Replacement PFASs are structurally similar to the long-chain PFASs which are phased out by the major manufacturers. It possesses fewer fluorinated carbons (short-chain PFASs) or is less well-known PFASs ^{1, 2}. Overlooked PFASs, such as PFECHS, PFPiAs and 6:2 Cl-PFESA, are often neglected to be investigated chemicals ^{3, 4}.

River	Latitude °N	Longi-tude °E	Date time of sampling	Temp. ¹ [°C]		Sal. ²
					рн	[PSU]
Xiaoqing	37.066	117.892	11.11.2018 14:12	13.2	8.3	1.1
Xiaoqing	37.085	117.990	11.11.2018 13:13	14.0	8.3	1.3
Xiaoqing	37.111	118.111	11.11.2018 15:37	13.8	8.2	1.4

Table S3 Sampling locations and results of physicochemical parameters of water samples collected from Chinese rivers⁵.

¹temperature; ²salinity

Contaminants	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	HFPO- DA	HFPO-TrA
Removal efficiency	3.5±0.03	3.91±0.02	4.28±0.02	20.62±0.05	26.29±0.03	72.29±0.1	9.81±0.14	93.51±0.08
(%)								

Table S4 Treatment efficiency of samples from Xiaoqing River Basin by AM membrane

	Nanofiltration	Amyloid-carbon hybrid membrane		
	Nationitiation			
Environmental friendliness	Organic material dominated	Dairy industry by product		
	Organic solvent-based preparation	Water phase preparation		
	Hard to be degraded	Biodegradable		
Public acceptability	Material dependent potential risk	Low risk for health		
	Plastic waste	Biodegradable		
		Disposable		
Long-chain PFASs removal efficiency	85 to 99 ⁶	≈100		
(%)				
Short-chain PFASs removal efficiency	20-706	> 96		
(%)				
OPEX: operating cost per volume of	0.1557	0.04^{8}		
treated water (€ per m ³)				
CAPEX: capital investment	530 ⁸	50 ⁸		
normalized by operating flux [\in per				
(day-1)]				
water recovery efficiency (%)	60-707	1008		
required energy per volume (kWhm ⁻³)	0.5288	0.2^{8}		

Table S5 Technical specifications used for sorting the ranking and ranking efficiency product for the nanofiltration and amyloid fibril-based membrane considered.

.

Figure S1 Comparison of permeability of amyloid-based membranes.

Figure S2 Removal rate as a function of Molecular Weight. Since the feed concentration of each PFASs compounds is 400 ng/L, the concentration of permeate can be reached to the EPA guideline of PFOA and PFOS when the removal rate is higher than 82.5 %. The detailed compounds are PFBA (214.04), PFPeA (264.05), PFBS (300.10), PFHxA (314.05), 4:2 FTSA (328.15), HFPO-DA (330.05), PFHpA (364.06), DONA (377.50), PFHxS (400.12), PFOA (414.07), 6:2 FTSA (428.17), PFHpS (450.12), PFECHS (462.13), PFNA (464.08), HFPO-TrA (498.06), FOSA (499.14), PFOS (500.13), PFDA (514.08), 8:2 FTSA (528.18), 6:2 C1-PFESA (531.90), PFUnDA (564.09), N-EtFOSE (571.25), N-EtFOSAA (585.24), PFDS (600.15), PFDoDA (614.10),8:2 C1-PFESA (631.90), HFPO-TeA (662.09), PFTrDA (664.10), 6:6 PFPiA (702.07), PFTeDA (714.11), and 6:8 PFPiA (824.06).

Reference

- S. Brendel, É. Fetter, C. Staude, L. Vierke and A. Biegel-Engler, Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH, *Environ. Sci. Eur*, 2018, 30, 9.
- 2. X. Annex, Proposal for Identification of a Substance of Very High Concern on the Basis of the Criteria Set Out in REACH Article 57, 2015.
- Q. Jin, J. Ma, Y. Shi, C. Chen, Y. Wang, E. Zhao, Y. Cai and G. Qu, Biomonitoring of chlorinated polyfluoroalkyl ether sulfonic acid in the general population in central and eastern China: Occurrence and associations with age/sex, *Environment International*, 2020, 144, 106043.
- 4. M. Ateia, A. Maroli, N. Tharayil and T. Karanfil, The overlooked short-and ultrashort-chain poly-and perfluorinated substances: A review, *Chemosphere*, 2019, **220**, 866-882.
- 5. H. Joerss, T.-R. Schramm, L. Sun, C. Guo, J. Tang and R. Ebinghaus, Per- and polyfluoroalkyl substances in Chinese and German river water Point source- and country-specific fingerprints including unknown precursors, *Environmental Pollution*, 2020, **267**.
- J. X. Wang, L. Wang, C. Q. Xu, R. Zhi, R. Miao, T. Liang, X. L. Yue, Y. T. Lv and T. T. Liu, Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants, *Chem. Eng. J.*, 2018, 332, 787-797.
- S. Bolisetty, M. Peydayesh and R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, *Chem. Soc. Rev.*, 2019, 48, 463-487.
- A. Palika, A. Armanious, A. Rahimi, C. Medaglia, M. Gasbarri, S. Handschin, A. Rossi, M. O. Pohl, I. Busnadiego and C. Gübeli, An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles, *Nature Nanotechnology*, 2021, 1-8.