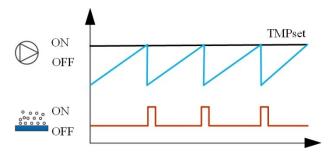
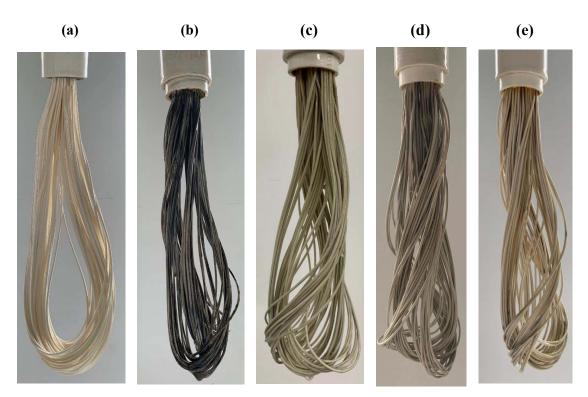
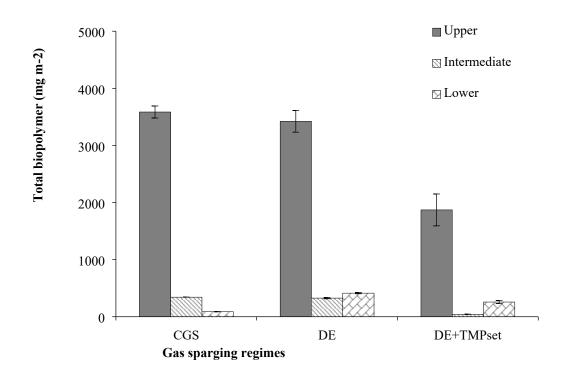
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021


Membrane fouling amelioration through a pseudo dead-end filtration coupled with transmembrane pressure (TMP) set-point control in anaerobic membrane bioreactor for municipal wastewater treatment

K.M. Wang^a, L.J. Zhang^b, H.L. Zhang^a, J.L. Li^a, Y.C. Zhang^a, B.C. Liu^a, H.Y. Wang^{a*}


^a College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China

^b College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China


Email: hywang@zjut.edu.cn

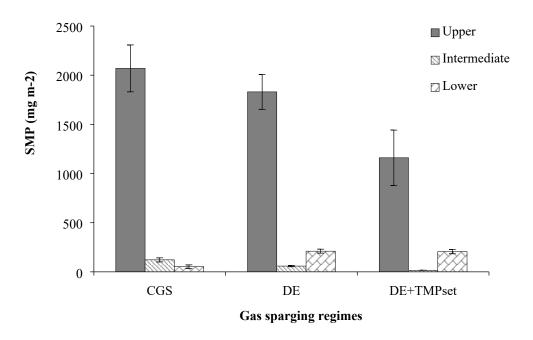


Figure S1 Pseudo dead-end filtration coupled with transmembrane pressure (TMP) set-point control mode.

Figure S2 Images of (a) clean membrane, (b) membrane operated under continuous filtration without gas sparging, (c) CGS (continuous filtration + continuous gas sparging), (d) DE (pseudo dead-end filtration), (e) DE coupled with TMP_{set} (TMP_{set} =10 kPa). Detailed conditions can be referred to Table 2.

Figure S3 Total biopolymer (TBP), soluble microbial products (SMP) of the fouling cake after 72 h operation under different gas sparging regimes. CGS (continuous filtration + continuous gas sparging); DE (pseudo dead-end filtration), TMPset (TMP set-point, TMPset=10 kPa).

Table S1 Values of operational parameters used in cost assessment.

Parameter	Unit	Values	Notes (Ref.)
Flow	$m^3 d^{-1}$	20000	
Biogas sparging energy	kWh m ⁻³	0.0162	Calculated from this study
Permeate pump energy	kWh m ⁻³	0.0530	Calculated from this study
Backwash pump energy	kWh m ⁻³	0.0232	Calculated from this study
Electricity	US\$ kWh ⁻¹	0.10	[1]
Sludge treatment	US\$ ton-1	200	[1]
MLVSS	kg MVLSS kg ⁻¹ COD	0.0378	[1]
Citric acid 50%	US\$ kg ⁻¹	0.88^{a}	[2,3]
NaClO 14%	US\$ L ⁻¹	0.2946^{b}	[2,3]

1€≈*1.16\$*

Reference:

- [1] H. Lin, J. Chen, F. Wang, L. Ding and H. Hong, Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment, *Desalination*, 2011, **280**, 120–126.
- [2] B. Verrecht, T. Maere, I. Nopens, C. Brepols and S. Judd, The cost of a large-scale hollow fibre MBR, *Water Res.*, 2010, **44**, 5274–5283.
- [3] Alibaba. Chemical product price enquiry. www.alibaba.com, 2021.

 $a.\ 0.76 \ell/kg*1.16 = 0.88 \$/kg;\ b.\ 0.254 \ell/L^{-1}*1.16 = 0.2946 \$\ L^{-1}$