Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Labile Carbon Release from Oxic-Anoxic Cycling in Woodchip Bioreactors Enhances Nitrate Reduction without Increasing Nitrous Oxide Accumulation

Philip M. McGuire[†], Valentina Dai[†], M. Todd Walter[§], and Matthew C. Reid^{†*}

[†]School of Civil and Environmental Engineering, Cornell University, Ithaca NY 14853, USA

[§]Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY

14853, USA

Number of Pages: 34

Number of Tables: 3

Number of Figures: 28

Summary

Materials and Methods	
High Frequency Carbon Chemistry Statistical Analysis	S32
Tables	
Table S1: Trace Element Solution Composition	S6
Table S2: Compiled Hydraulic Parameters from Flowthrough Experiments	S11
Table S3: High Frequency Carbon Chemistry Statistical Analysis – Reported p-values	S34
Figures	
Figure S1: Reactor Schematics	S3
Figure S2: Reactor Image	S4
Figure S3: Reactor Operation Schedule	S5
Figure S4: Experiment 1 CS Reactor Bromide Tracer Test Results	S7
Figure S5: Experiment 1 DRW Reactor Bromide Tracer Test Results	S8
Figure S6: Experiment 2 CS Reactor Bromide Tracer Test Results	S9
Figure S7: Experiment 2 DRW Reactor Bromide Tracer Test Results	S10
Figure S8: Experiment 1 CS Upstream DO Concentrations	S12
Figure S9: Experiment 1 CS Downstream DO Concentrations	S13
Figure S10: Experiment 2 CS Upstream DO Concentrations	S14
Figure S11: Experiment 2 CS Downstream DO Concentrations	S15
Figure S12: Experiment 1 DRW Upstream DO Concentrations	S16
Figure S13: Experiment 1 DRW Downstream DO Concentrations	S17
Figure S14: Experiment 2 DRW Upstream DO Concentrations	S18
Figure S15: Experiment 2 Upstream Nitrous Oxide Yields	S19
Figure S16: Experiment 1 Upstream Nitrous Oxide Yields	S20
Figure S17: Experiment 2 CS Carbon Profiles	S21
Figure S18: Experiment 1 CS DOC Profiles	S22
Figure S19: Experiment 2 DRW Carbon Profiles	S23
Figure S20: Experiment 1 DRW DOC Profiles	S24
Figure S21: Extended High Frequency Dissolved Oxygen Profiles	S25
Figure S22: Extended High Frequency Nitrate Removal Rates	S26
Figure S23: Extended High Frequency Nitrous Oxide Yields	S27
Figure S24: Extended High Frequency DIC Shifts	S28
Figure S25: High Frequency Nitrate and DOC Correlation	S29
Figure S26: High Frequency DIC and DOC Correlation	S30
Figure S27: High Frequency DOC Concentrations	S31
Figure S28: High Frequency DIC Shifts	S33

Figure S1: Schematic of a single flow-through reactor.

Figure S2: Image of laboratory flow-through reactor. Peristaltic pumps for flow control are seen in the foreground. Reactor sampling ports can be visualized on the left-side of the reactor seen in the left-hand side of the photograph. Dissolved oxygen probes are located at the junction of the reactor barrel and woodchip sampling ports. In this photograph, flow through the reactors proceeds from the lower right to the upper left.

Figure S3: Schedule of reactor operation and sampling for drying-rewetting reactors. Reactors were drained weekly on Tuesday and re-saturated on Thursday. A similar porewater chemistry monitoring schedule was kept for the continuously saturated reactors. In Experiment 1, this schedule was truncated during Week 5.

Solution	Chemical Reagents	1000X Stock Solution (g/L)
Trace Element Solution I (0.1 M H ₂ SO ₄)	NiCl ₂ •6H ₂ O	0.020
	CoCl ₂ •6H ₂ O	0.010
	ZnSO ₄ •7H ₂ O	0.100
	MnSO ₄ •7H ₂ O	2.319
Trace Element Solution II	H ₃ BO ₃	0.300
(0.1 M NaOH)	NaMoO ₄ •2H ₂ O	0.030

Table S1: Trace Element Solution Composition

Figure S4: Bromide tracer test results from Experiment 1 continuously saturated reactor. Breakthrough curve was modeled using a 1-dimensional advection-dispersion equation implemented in MATLAB.

Figure S5: Bromide tracer test results from Experiment 1 drying-rewetting reactor. Breakthrough curve was modeled using a 1-dimensional advection-dispersion equation implemented in MATLAB.

Figure S6: Bromide tracer test results from Experiment 2 continuously saturated reactor. Breakthrough curve was modeled using a 1-dimensional advection-dispersion equation implemented in MATLAB.

Figure S7: Bromide tracer test results from Experiment 2 drying-rewetting reactor. Breakthrough curve was modeled using a 1-dimensional advection-dispersion equation implemented in MATLAB.

	Reactor		Porewater		
Experiment	Hydraulic Regime	MRT (h)	Velocity (m/s)	Dispersion (m²/s)	Peclet Number
Experiment 1	Continuously Saturated (CS)	15.1	2.8×10 ⁻⁵	7.4×10⁻ ⁶	5.68
	Drying- Rewetting (DRW)	13.4	3.1×10 ⁻⁵	4.58×10 ⁻⁶	10.2
Experiment — 2	Continuously Saturated (CS)	15.2	2.8×10 ⁻⁵	3.25×10 ⁻⁶	12.9
	Drying- Rewetting (DRW)	16.0	2.6×10 ⁻⁵	2.37×10 ⁻⁶	16.5

Table S2: Compiled Hydraulic Parameters from Flowthrough Experiments

Figure S8: Dissolved oxygen concentrations from Experiment 1 at the upstream location of the continuously saturated reactor. Sampling days are indicated by vertical dashed lines.

Figure S9: Dissolved oxygen concentrations from Experiment 1 at the downstream location of the continuously saturated reactor. Sampling days are indicated by vertical dashed lines.

Figure S10: Dissolved oxygen concentrations from Experiment 2 at the upstream location of the continuously saturated reactor. Sampling days are indicated by vertical dashed lines.

Figure S11: Dissolved oxygen concentrations from Experiment 2 at the downstream location of the continuously saturated reactor. Sampling days are indicated by vertical dashed lines.

S12: Dissolved oxygen concentrations from Experiment 1 at the upstream location of the dryingrewetting reactor. Sampling days are indicated by vertical dashed or dotted lines.

S13: Dissolved oxygen concentrations from Experiment 1 at the downstream location of the drying-rewetting reactor. Sampling days are indicated by vertical dashed or dotted lines.

S14: Dissolved oxygen concentrations from Experiment 2 at the upstream location of the dryingrewetting reactor. Sampling days are indicated by vertical dashed or dotted lines.

Figure S15: Effective N_2O yields from Experiment 2 in upstream sampling ports (ports located at 0.23, 0.36, and 0.55 m), as defined in Eq. 3. 15 datapoints are not shown for exceeding the y-axis limits.

Figure S16: Effective N₂O yields from Experiment 1 in upstream sampling ports (ports located at 0.23, 0.36, and 0.55 m), as defined in Eq. 3. 9 datapoints are not shown for exceeding the y-axis limits.

Figure S17: Profiles of methane (CH₄-C), dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC) in continuously saturated (CS) reactor from Experiment 2. Each bar represents a discrete water sampling port, with mean residence time (MRT) determined as length along the reactor/porewater velocity.

Figure S18: Profiles of dissolved organic carbon (DOC) in continuously saturated (CS) reactor from Experiment 1. Each bar represents a discrete water sampling port, with mean residence time (MRT) determined as length along the reactor/porewater velocity. Methane and dissolved inorganic carbon data were not available.

Figure S19: Profiles of methane (CH₄-C), dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC) in drying-rewetting (DRW) reactor from Experiment 2. Each bar represents a discrete water sampling port, with hydraulic residence time (HRT) determined as length along the reactor/porewater velocity. The left hand column represents 4 days post resaturation and the right hand column represents 1 day post re-saturation.

Figure S20: Profiles of dissolved organic carbon (DOC) in drying-rewetting (DRW) reactor from Experiment 1. Each bar represents a discrete water sampling port, with mean residence time (MRT) determined as length along the reactor/porewater velocity. Methane and dissolved inorganic carbon data were not available. The left hand column represents 4 days post resaturation and the right hand column represents 1 day post re-saturation.

Figure S21: Extended duration dissolved oxygen concentrations of porewater immediately following rewetting during drying-rewetting Cycles 3 and 6.

Figure S22: Extended duration nitrate removal rates in porewater immediately following rewetting during drying-rewetting Cycles 3 and 6.

Figure S23: Extended duration nitrous oxide yields in porewater immediately following rewetting during drying-rewetting Cycles 3 and 6.

Figure S24: Extended duration of shifts in porewater dissolved inorganic carbon immediately following rewetting during drying-rewetting Cycles 3 and 6.

Figure S25: Correlation between nitrate (NO₃-) and dissolved organic carbon (DOC) porewater concentrations from high frequency sampling during Cycle 6 of Experiment 2. Trendline was generated using a linear model. The grey area represents the 95% confidence interval of the linear model.

Figure S26: Correlation between dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) porewater concentrations from high frequency sampling during Cycle 6 of Experiment 2. Trendline was generated using a linear model. The grey area represents the 95% confidence interval of the linear model.

High Frequency Carbon Chemistry Statistical Analysis

ANOVA assumptions of homogeneity of variance and normality were assessed via Levene's Test and Shapiro-Wilk Test, respectively. Analysis of both the DOC and Δ DIC data determined that the assumption of homogeneity of variances was not violated, however the assumption of normality was violated, and a Kruskal-Wallis rank sum test was implemented. Results suggested a significant difference between the average DOC concentrations for the high frequency cycles (p < 0.001), but not between the average Δ DIC concentrations for the high frequency cycles (p = 0.064). A post hoc Wilcoxon rank sum test was utilized for pairwise-comparisons of the average DOC by high frequency cycle. Data visualizations are available as Figures S31 and S32. A summary of resulting p-values is available as Table S2.

Figure S27: Dissolved organic carbon porewater concentrations during high frequency sampling events in Experiment 2.

Figure S28: Shifts in dissolved inorganic carbon porewater concentrations during high frequency sampling events in Experiment 2.

Cycle Comparison	Examined Metric			
	DOC			
1-3	0.792			
1-6	0.039			
1-8	<0.001			
3-6	0.057			
3-8	<0.001			
6-8	0.031			

Table S3: High Frequency Carbon Chemistry Statistical Analysis – Reported p-values