Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

What control the chemical speciation of abundant heavy metals during wastewater treatment: Insights from combined spectroscopic and modeling analyses

Rixiang Huang

Department of Environmental and Sustainable Engineering, University at Albany 1400 Washington Ave, Albany, New York, 12222, USA

> *Corresponding Author: Email: <u>rhuang6@albany.edu</u> Phone: 518-437-4977

No. of pages: 7

No. of Tables: 4

No. of Figures: 2

				2	2		17	
Tabal	Sludge genues	Chemical species						
Label	Sludge source	Pyrite	Siderite	Vivianite	Strengite	FeO(OH)	Fe-Org	Kel.
Wang(2020)	Mixed primary and WAS	-	23.5	-	16.8	26.2	33.5	1
	Lab-scale AD	-	-	73.3	12.2	14.5	-]
$H_{uom} \sim (2021)$	WAS	-	-	7.5	28.3	13	51.2	2
Huang(2021)	Full-scale AD	2.6	40.3	19.6	37.4	-	-	_
Li(2018) ^a	WAS from an aerobic MBR with Fe dosing	-	-	-	18.1	81.9	-	3
	Lab anaerobic fermenter	-	-	65.6	-	34.4	-	
Li(2020)	WAS with Fe- dosed sludge	-	-	-	31.5	68.5	-	4
Wu(2015) ^b	WAS from an MBR with Fe dosing	-	-	-	50	50	-	5
Wilfert (2016) ^c	WAS from WWTP#1	34	-	34	-	5	-	
	WAS from WWTP#2	8	-	87	-	5	-	6
Wilfert	AD sludge#1	27	-	58	-	15	-]
(2016) ^d	AD sludge#2	15	-	81	-	4	-	

Table S1. Summary of Fe speciation data using synchrotron X-ray absorption spectroscopy.

Note: (a) The FeO(OH) phase includes ferrihydrite and goethite, (b) The FeO(OH) phase includes ferrihydrite and lepidocrocite; (c) the species were identified with Mossbauer spectroscopy, WWTP#1 has 26% of unidentified Fe²⁺ species. (d) the species were identified with Mossbauer spectroscopy.

		Chemical species						
Label	Sludge source	Zn- Cys	Zn-S ^(a)	(Zn,Fe)- S ^(b)	Zn-Fe ^(c)	Zn-PO4	Zn-Org	Ref.
Donner	Mixed primary and WAS	-	-	54	17	29	-	
	AD of mixed sludges	-	-	53	29	19	-	7
(2011)	AD of mixed sludges	-	-	40	20	40	-	
	Composting	24	-	-	22	54	-]
Lombi	Mixed primary and WAS	15	-	80		5	-	8
(2012)	Lab AD of mixed sludges	15	-	-	48	38	-	
Donner (2012)	Lab AD of mixed sludges	-	-	69.5	30.5	-	-	9
(2013)	3-month Aged	-	-	28.3	48.2	23.6	-	
Ma	Air-dried (oxic)	-	-	23	55	21	-	10
(2014)	7d anaerobic aged	-	-	62	16	23	-	
Legros	WAS from experimental	-	25	-	22	53	_	11
(2017)	WWTP							_
	AD	-	30	-	13	57	-	
	Raw sludge	10	-	49	-	41	-	
	Raw sludge	-	-	90	-	10	-	_
Le Bars	AD	-	-	81	19	-	-	12
(2018)	AD	-	-	92	-	8	-	-
	Composting	-	-	10	35	40	15	
	Composting	-	-	-		100	-	
Huang	Mixed primary and WAS	-	-	39	35	26	-	13
(2018)	AD of mixed sludges	-	-	67	20	13	-	

Table S2. Summary of Zn speciation data using synchrotron X-ray absorption spectroscopy.

Note: (a)This included amorphous or nano-zinc sulfides ;(b) This is either sphalerite or wurtzite that were used in spectral fitting; (c) This included Fe (hydro)oxides-adsorbed or substituted Zn species.

		Chemical species						
Label	Sludge source	Cu(I)- Cys	Cu(I) ₂ S	Cu(II)S	Cu-Fe- S ^(c)	Cu(II)- Org	Cu-PO4	Ref.
Donner (2011)	Mixed primary and WAS	-	41	-	38	21	-	
	AD of mixed sludges	-	60	-	32	8	-	7
	AD of mixed sludges	-	31	-	43	26	-	
	Composting	-	-	9		62	29	
Donner	Lab AD of mixed sludges	-	-	86.4	8.4	5.2	-	9
(2013) ^(a)	3-month Aged	-	-	67.6	-	32.4	-	
Legros (2017) ^(b)	WAS from experimental WWTP	-	42	-	-	58	-	11
	AD	-	51	-	-	49	-	
Huang (2018)	Mixed primary and WAS	16	37	-	40	8	-	13
	AD of mixed sludges	24	39	-	33	4.6	-	

Table S3. Summary of Cu speciation data using synchrotron X-ray absorption spectroscopy.

Note: (a) the Cu(II)S species was fitted by covellite(b) The Cu(I)₂S was fitted by Cu(I)methionine and the Cu(II)-Org was fitted by Cu(II)galacturonic; (c) Cu-Fe-S include cubanite and chalcopyrite.

			0	U		
Sludge	³¹ P N	MR ^(a)	P]	Dof		
source	Ortho-P	Others	Vivianite	Strengite	Others	Kel.
WAS	63.5	36.5	-	-	-	14
AD	95.1	4.9	-	-	-	
WAS	52.8	47.1	-	-	-	15
AD	100	0	-	-	-	
WAS	-	-	-	24.3	-	3
AD	-	-	42.3	-	-	
WAS	-	-	-	23	-	1
AD	-	-	55.8	7.2	-	

Table S4. Summary of P speciation data using NMR and P K-edge XANES.

Note: Only studies comparing sludges before and after AD were selected. (a) ³¹P liquid NMR of liquid extracts of sludge samples, Others are organophosphorus and polyphosphates. (b) Others of the XANES data are species other than iron phosphates.

Figure S1. PHREEQC inputs for the simulation	ion of variable pe (pe was varied from +5 to -6,
while other parameters were maintained the s	same)
SOLUTION 1	EQUILIBRIUM_PHASES 1

LUTION 1		EQUILIBRIUM_PHASES 1
temp	25	Calcite 0 0
pH	7.6	Chalcocite 0 0
pe	5	Chalcopyrite 0 0
redox	pe	Covellite 0 0
units	mmol/kgw	Cu (OH) 2 0 0
density	1	Cu3(PO4)2 0 0
Alkalini	ty 5	Ferrihydrite 0 0
Ca	4	Gypsum 00
Cl	5	Mackinawite 0 0
Cu	0.05	Pyrite 00
Fe	0.5	Siderite 0 0
K	0.5	Smithsonite 0 0
Mg	2	Sphalerite 0 0
Na	6.5	Strengite 0 0
P	0.5	Vivianite 0 0
S	1.75	Wurtzite 0 0
Zn	0.1	Zn3(PO4)2:4H2O 0 0
-water	1 # kg	Zn (OH) 2 (am) 0 0

					Moles in ass	emblage
Phase	SI	log IAP	log K(T,	P) Initi	al Final	Delta
Calcite	0.00	-8.48	-8.48	0.000e+0	00 1.214e-004	1.214e-004
Chalcocite	-31.62	-66.54	-34.92	0.000e+0	00 0	0.000e+000
Chalcopyrite	-85.36	-120.63	-35.27	0.000e+0	00 0	0.000e+000
Covellite	-36.84	-59.14	-22.30	0.000e+0	00 0	0.000e+000
Cu (OH) 2	-0.55	8.12	8.67	0.000e+0	00 0	0.000e+000
Cu3 (PO4) 2	0.00	-36.85	-36.85	0.000e+0	00 1.181e-005	1.181e-005
Ferrihydrite	-0.00	3.19	3.19	0.000e+0	00 5.000e-004	5.000e-004
Gypsum	-1.25	-5.86	-4.61	0.000e+0	00 0	0.000e+000
Mackinawite	-57.89	-61.49	-3.60	0.000e+0	00 0	0.000e+000
Pyrite	-89.33	-107.84	-18.51	0.000e+0	00 0	0.000e+000
Siderite	-3.90	-14.14	-10.24	0.000e+0	00 0	0.000e+000
Smithsonite	-1.31	-11.31	-10.00	0.000e+0	00 0	0.000e+000
Sphalerite	-47.21	-58.66	-11.45	0.000e+0	00 0	0.000e+000
Strengite	-1.01	-27.41	-26.40	0.000e+0	00 0	0.000e+000
Vivianite	-7.90	-43.90	-36.00	0.000e+0	00 0	0.000e+000
Wurtzite	-49.71	-58.66	-8.95	0.000e+0	00 0	0.000e+000
Zn (OH) 2 (am)	-3.88	8.60	12.47	0.000e+0	00 0	0.000e+000
Zn3 (PO4) 2:4H2O	0.00	-35.42	-35.42	0.000e+0	00 3.130e-005	3.130e-005
		Soluti	ion composi	tion		
Elements	1	Molality	Moles			
С	4.	375e-003	4.375e-003			
Ca	3.	879e-003	3.879e-003			
Cl	5.	000e-003	5.000e-003			
Cu	1.	456e-005	1.456e-005			
Fe	1.	514e-008	1.514e-008			
K	5.	000e-004	5.000e-004			
Mg	2.	000e-003	2.000e-003			
Na	0.	1280 004	4 1280 004			
r S	1	158e-004 750e-003	1.138e-004			
Zn	6.	108e-006	6.108e-006			
		Descrip	otion of so	lution		
			nH =	7 074	Charge balance	
			pe =	3.380	Adjusted to red	lox equilibrium
	A	ctivity of	water =	1.000		
		Ionic st	rength =	2.104e-002		
	Ma	ss of wate	er (kg) =	1.000e+000		
	Total al	kalinity	(eq/kg) =	4.080e-003		
	To	tal CO2 (n	nol/kg) =	4.375e-003		
	Tem	perature	(deg C) =	25.00		
Designed	Electri	cal baland	e (eq) =	5.802e-003		
Percent error,	100*(Cat-	[An])/(Cat	(+ An) =	20.02		
		ILEI T	Cotal H =	⇒ 1 110182≞±00	2	
		I	Total 0 =	5.552813e+00	1	

Figure S2. An example of PHREEQC simulation output for variable pe (initial pe = 5)

References

1. Wang, Q.; Zhang, C.; Patel, D.; Jung, H.; Liu, P.; Wan, B.; Pavlostathis, S. G.; Tang, Y., Coevolution of Iron, Phosphorus, and Sulfur Speciation during Anaerobic Digestion with Hydrothermal Pretreatment of Sewage Sludge. *Environ Sci Technol* **2020**, *54*, (13), 8362-8372.

2. Huang, R. X.; Tang, Y. Z.; Luo, L., Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges. *Waste Manage* **2021**, *121*, 276-285.

3. Li, R. H.; Cui, J. L.; Li, X. D.; Li, X. Y., Phosphorus Removal and Recovery from Wastewater using Fe-Dosing Bioreactor and Cofermentation: Investigation by X-ray Absorption Near-Edge Structure Spectroscopy. *Environ Sci Technol* **2018**, *52*, (24), 14119-14128.

4. Li, R. H.; Cui, J. L.; Hu, J. H.; Wang, W. J.; Li, B.; Li, X. D.; Li, X. Y., Transformation of Fe-P Complexes in Bioreactors and P Recovery from Sludge: Investigation by XANES Spectroscopy. *Environ Sci Technol* **2020**, *54*, (7), 4641-4650.

5. Wu, H.; Ikeda-Ohno, A.; Wang, Y.; Waite, T. D., Iron and phosphorus speciation in Feconditioned membrane bioreactor activated sludge. *Water Res* **2015**, *76*, 213-226.

6. Wilfert, P.; Mandalidis, A.; Dugulan, A. I.; Goubitz, K.; Korving, L.; Temmink, H.; Witkamp, G. J.; Van Loosdrecht, M. C. M., Vivianite as an important iron phosphate precipitate in sewage treatment plants. *Water Res* **2016**, *104*, 449-460.

7. Donner, E.; Howard, D. L.; Jonge, M. D. d.; Paterson, D.; Cheah, M. H.; Naidu, R.; Lombi, E., X-ray Absorption and Micro X-ray Fluorescence Spectroscopy Investigation of Copper and Zinc Speciation in Biosolids. *Environ Sci Technol* **2011**, *45*, (17), 7249-7257.

8. Lombi, E.; Donner, E.; Tavakkoli, E.; Turney, T. W.; Naidu, R.; Miller, B. W.; Scheckel, K. G., Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge. *Environ Sci Technol* **2012**, *46*, (16), 9089-9096.

9. Donner, E.; Brunetti, G.; Zarcinas, B.; Harris, P.; Tavakkoli, E.; Naidu, R.; Lombi, E., Effects of Chemical Amendments on the Lability and Speciation of Metals in Anaerobically Digested Biosolids. *Environ Sci Technol* **2013**, *47*, (19), 11157-11165.

10. Ma, R.; Levard, C.; Judy, J. D.; Unrine, J. M.; Durenkamp, M.; Martin, B.; Jefferson, B.; Lowry, G. V., Fate of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant and in Processed Biosolids. *Environ Sci Technol* **2014**, *48*, (1), 104-112.

11. Legros, S.; Levard, C.; Marcato-Romain, C. E.; Guiresse, M.; Doelsch, E., Anaerobic Digestion Alters Copper and Zinc Speciation. *Environ Sci Technol* **2017**, *51*, (18), 10326-10334.

12. Le Bars, M.; Legros, S.; Levard, C.; Chaurand, P.; Tella, M.; Rovezzi, M.; Browne, P.; Rose, J.; Doelsch, E., Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. *Environ Sci Technol* **2018**, *52*, (22), 12987-12996.

13. Huang, R.; Zhang, B.; Saad, E. M.; Ingall, E. D.; Tang, Y., Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges. *Water Res* **2018**, *132*, 260-269.

14. Huang, R.; Tang, Y., Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge. *Environ Sci Technol* **2015**, *49*, (24), 14466-14474.

15. Li, L.; Pang, H. L.; He, J. G.; Zhang, J., Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Mg2+. *Chem Eng J* **2019**, *373*, 1279-1285.