Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

1	
2	Supporting Information
3	
4	Prediction of NDMA formation potential using non-target analysis
5	data: a proof of concept
6	
7	Josep Sanchís ^{1,2,*} , Mira Petrović ^{1,3} , Maria José Farré ^{1,2,*}
8	^{1.} Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the
9	University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Spain.
10	^{2.} University of Girona, 17071, Girona, Spain.
11	^{3.} Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23
12	08010, Barcelona, Spain.

13 * Co-corresponding authors: jsanchis@icra.cat, mjfarre@icra.cat

14 Text S1. Linear regression models.

15 The tentative identification of the 11 features is presented in **Table S3**. Six of these tentatively 16 identified substances were probably of anthropogenic origin, including pharmaceutical 17 compounds (those features with quasi-molecular ions m/z 760.5048, 818.5466, 302.20769, 18 876.5886, and 658.4370) and a fluorosurfactant employed in fire extinguishing foams 19 formulations (m/z 571.0925), while four features (m/z 202.1437, 174.0549, 171.1493, 192.1596) 20 were small molecules with an unclear origin. One feature (m/z 679.473) was not associated to any 21 MS² spectrum and hence could not be tentatively identified.

- 22 It should be highlighted that such degree of correlation does not necessarily imply that they are
- 23 directly involved in the formation of NDMA. Apart from the molecule that elutes at $t_R = 12.05$
- 24 (feature #1 in Table S3), which presumably contains a dimethylamino group, their tentative
- 25 structures do not support a potential role as NDMA precursor during chloramination, and this
- 26 aspect should be assessed in further tests.

Figure S1. FISh annotated MS^2 spectra of the final NDMA precursor candidates. Those MS^2 signals with an atomic composition and presumed structure that was consistent with the

29 composition and structure of the proposed precursor were automatically highlighted in green and 30 annotated.

31

33 Figure S2. Correlation matrix showing the Pearson's correlation coefficients among LC-HRMS

34 features.

- 37 Figure S3. Correlation matrix with the final set of peaks, chosen because of their ubiquity,
- 38 intensity, variability and orthogonality. Their label (in red) is composed by: retention time (in
- 39 minutes), underscore, and m/z.

42 Table S1. Selected parameters of the Compound Discoverer workflow.

1. Align Retention Times						
Alignment Model	Adaptative Curve					
Alignment Fallback	Linear model					
Mass Tolerance	5 ppm					
2. Detect Compounds						
2.1. General settings						
Mass Tolerance	5 ppm					
Intensity Tolerance	30 %					
S/N Threshold	3					
Min Peak Intensity	10,000 a.u.					
Ions	$[M+H]^+; [M+K]^+; [M+Na]^+$					
Elements Counts	$C_{1-66} H_{1-126} O_{0-27} N_{0-25} S_{0-8} P_{0-6} Br_{0-8} Cl_{0-11} K_{0-1} Na_{0-1}$					
2.2. Peak Detection						
Max Peak width	0.5					
Min # Scans per Peak	5					
Min # Isotopes	1					
3. Compound Consolidation						
3.1. Compound Consolidation	n					
Mass Tolerance	5 ppm					
RT Tolerance	0.3 min					
3.2. Fragmment Data Selectio	n					
Preferred Ions	$[M+H]^+$					
4. Fill Gaps						
Mass Tolerance	5 ppm					
S/N Threshold	3					
5. Predict Compositions						
5.1. Precition Settings						
Mass Tolerance	5 ppm					
Element Counts	$C_{1-66} H_{1-126} O_{0-27} N_{0-25} S_{0-8} P_{0-6} Br_{0-8} Cl_{0-11} K_{0-1} Na_{0-1}$					
RDBE	-1-40					
H/C	0.2–3.1					
5.2. Pattern Matching						
Intensity Tolerance	30 %					
Intensity Threshold	0.1 %					
S/N Threshold	3					
Min Spectral Fit	30 %					
Min Pattern Coverage	90 %					
Use Dynamic Recalibration	True					
5.3. Fragment Matching						
Use Fragment Matching	True					
Mass Tolerance	5 ppm					
S/N Threshold	3					
6. General Settings	6. General Settings					
Isotope Patterns	Cl; Br; S					
Mass Tolerance	5 ppm					
Intensity Tolerance	30 %					
S/N Threshold	3					
Min Spectral Fit	0%					

- 44 Table S2. List of NDMA precursors included in the suspect screening, indicating their recovery
- 45 percentage after PPL-SPE extraction and their NDMA-transformation rate (according to Farré et
- 46 al. 2016)

	Compound	Class	Recovery rate (%)	NDMA Transformation rate (%)
1	Azithromycin	Antibiotic (macrolide)	107	$0.14{\pm}0.01$
2	Clarithromycin	Antibiotic (macrolide)	118	0.13±0.02
3	Erythromycin	Antibiotic (macrolide)	106	$0.059 {\pm} 0.007$
4	Roxithromycin	Antibiotic (macrolide)	92.9	0.113±0.001
5	Spiramycin	Antibiotic (macrolide)	58.8	2.6±0.5
6	Tylosin	Antibiotic (macrolide)		0.200 ± 0.006
7	Tetracycline	Antibiotic (tetracycline)	90.7	1.6±0.2
8	Chlorotetracycline	Antibiotic (tetracycline)	96.6	1.7±0.2
9	Oxytetracycline	Antibiotic (tetracycline)	97.3	1.104 ± 0.006
10	Doxycycline	Antibiotic (tetracycline)	90.2	1.3±0.4
11	Citalopram	Antidepressant	69.7	0.31±0.04
12	Ranitidine	Antiacid drug	61.8	50±2
13	Venlafaxine	Antidepressant	115	0.53±0.01
14	N-desmethylvenlafaxine	Antidepressant (transformation product)	119	0.025±0.005
15	O-desmethylvenlafaxine	Antidepressant	119	1.19±0.02

	[M +H] ⁺	Tentative molecular formula	Tentative structure	InChIKey	FISh Score	Normalised MetFrag score
1	760.5048	$C_{41}H_{68}N_4O_9$		LZFSZAPEFRELPV- RQLWGDOHSA-N	26.57	1.0
2	192.1596	C ₉ H ₂₁ NO ₃	~ ∘ ↓ № он	WSNUPCBHNGDU HE-UHFFFAOYSA- N	33.33	0.9937
3	818.5466	$C_{40}H_{75}N_5O_{12}$	ماسیسی مربع مربع مربع مربع	YLXOZZYIEPNANX -UHFFFAOYSA-N		1.0
4	171.1493	C ₉ H ₁₈ N ₂ O		ATHWGISAQYNYI X-UHFFFAOYSA-N	40.24	1.0

48 Table S3. Tentative identification of unknowns that correlate linearly with NDMA-FP.

5	302.2077	C ₁₄ H ₂₇ N ₃ O ₄	MMSUKIWOSVRIH W-UHFFFAOYSA-N		N/A	1.0
6	174.0549	C ₁₀ H ₇ NO ₂		IPSUJMNCUUPWR X-POHAHGRESA-N	N/A	1.0
7	876.5886	$C_{50}H_{77}N_5O_8$		LHRNBHOKOXBXB K-QUKMVLLYSA-N	N/A	0.9827

51 Table S3b. Tentative identification of unknowns that correlate linearly with NDMA	-FP.
--	------

8	202.1437	C ₁₀ H ₁₉ NO ₃	H ₁₀	SEKRRKCEGKJUHF -VIFPVBQESA-N	N/A	1.0
9	571.0925	$C_{15}H_{19}F_{13}N_2O_4S$		OKOCIUJVPQKDLL -UHFFFAOYSA-N	N/A	0.7982
10	679.473	Not assessed	No MS ² spectra was recorded for this Tentative identification was not pos			
11	658.4370	$C_{32}H_{59}N_5O_9$		HUOUXPWOUNLC OX-IWIWXMQLSA- N	36.72	0.45

53 Table S3c. Tentative identification of unknowns that correlate linearly with NDMA-FP.

k	True Positives (%)	True Negatives (%)	False Positives (%)	False Negatives (%)	Accuracy (%)	MCC	F ₁	FOR (%)
1	57 ± 11	38 ± 18	3.3 ± 7.0	1.7 ± 5.3	95 ± 8	0.897	0.958	5.0 ± 16
2	50 ± 24	40 ± 16	1.7 ± 5.3	8.3 ± 14	90 ± 14	0.806	0.909	11 ± 17
3	57 ± 16	38 ± 18	3.3 ± 7.0	1.7 ± 5.2	95 ± 8	0.897	0.958	2.5 ± 8
4	53 ± 13	38 ± 16	3.3 ± 4.0	5.0 ± 8.1	92 ± 9	0.830	0.928	11 ± 18
5	52 ± 18	35 ± 12	6.7 ± 8.6	6.7 ± 11	87 ± 13	0.726	0.886	12 ± 20
6	50 ± 19	37 ± 17	3.3 ± 7.0	10 ± 14	87 ± 17	0.736	0.882	20 ± 32
7	52 ± 20	40 ± 12	1.7 ± 5.3	40 ± 12	92± 12	0.836	0.925	9.8 ± 16
8	43 ± 16	32 ± 15	10 ± 14	17 ± 18	73 ± 18	0.468	0.758	28 ± 29
9	48 ± 17	27 ± 16	15 ± 23	8.3 ± 14	75 ± 23	0.509	0.806	16 ± 25
10	50 ± 20	23 ± 16	16 ± 22	15 ± 15	73 ± 18	0.356	0.759	38 ± 35

56 Table S4. Confusion matrixes obtained for *k*-nn models after a 10-fold cross validation.