Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Cobalt nanoparticle-carbon nanoplate as solar absorber of wood

aerogel evaporator for continuously efficient desalination

Yujuan Zhao,^a Dongyu You,^a Weiting Yang,^{*a} Han Yu,^{b*} Qinhe Pan,^a Shuyan Song^c

^aKey Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P.R. China. E-mail: <u>yangwt@hainanu.edu.cn</u>

^bCollege of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. E-mail: yuhan20159@yahoo.com ^cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China

Figure S1. Density of wood and WA.

Figure S2. Thermal conductivity of water and WA in dry and wet conditions along the tree growth direction.

Figure S3. Thermal infrared images of wood, WA and Co-CN-WA evaporator at different times under 1 sunlight in dry condition.

Figure S4. (a) Water quality losses of Co-CN-WA, WA and blank seawater evaporation system at different times in the dark. (b) Changes of evaporation rate of Co-CN-WA, WA and blank seawater evaporation system in the dark.

Figure S5. Changes of evaporation rate of Co-CN-WA and CN-WA evaporation system under 1 sunlight.

Figure S6. (a) Evaporation rate and (b) efficiency of Co-CN-WA before and after soaking in seawater for a week.