Ammonia recovery and fouling mitigation of hydrolyzed human urine treated by nanofiltration and reverse osmosis

_	
3	
4	
5	Hannah Ray ^{ab*} , Francois Perreault ^a , and Treavor H. Boyer ^{ab}
6	
7	
8	^a School of Sustainable Engineering and the Built Environment (SSEBE)
9	Arizona State University
10	P.O. Box 873005, Tempe, Arizona, 85287-3005, USA
11	bDiadacian Swette Conton for Environmental Distachasler
12 13	^b Biodesign Swette Center for Environmental Biotechnology
13 14	Arizona State University P.O. Box 873005, Tempe, Arizona, 85287-3005, USA
14	1.0. Dox 875005, 1 cmpe, A112011a, 85287-5005, USA
16	*Corresponding author
17	Tel.: 1-418-6899
18	E-mail addresses: hgray3@asu.edu (H. Ray).
19	
20	
21	
22	SUPPLEMENTAL MATERIALS
23	
24	17 pages
25	
26	6 figures
27	
28	3 table
29	
30	
31 32	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

46 1. Materials and Methods

47 **1.1 Urine collection, storage, and safe handling.** Real fresh, undiluted urine was collected from 48 anonymous volunteers, both male and female, who fit the criteria: (1) 18 years or older and (2) not pregnant. A urine collection setup was used in both male and female bathrooms in the 49 50 Biodesign Institute at Arizona State University. Number of donors and ratio of male to female is 51 not known due to anonymity requirements by the Institutional Review Board (IRB) which 52 granted the project's human urine collection. Collection setups utilized plastic collection trays for women and urinal collection tanks for men. Thorough directions with both words and 53 pictures were taped to the wall for understanding on how to properly donate. All collection trays 54 were used once and then bleach cleaned for the next collection event. Gloves were available if 55 desired for the anonymous volunteers. The collection tanks were kept in secondary containment 56 throughout the collection event. All samples were combined during the collection event to ensure 57 anonymity. Additional human urine was collected from the nonwater urinal system in the 58 59 Biodesign Institute C building on Arizona State University campus. The urine was collected and subsequently mixed with the previously described fresh urine collected from donors. The 60 collected human urine was stored in the lab for at least six months to allow for complete 61 62 hydrolysis of the urea to occur. Personal protection equipment of gloves, a lab coat, and splash glasses were used when handling urine for experiments. Bleach was readily available for 63 64 disinfection and biological spill kits were kept in the lab¹.

65

66 1.2 Microfiltration pretreatment

67 Spectrapure microfiltration (MF) systems were used to pretreat the urine. A 1 μm sediment filter
68 cartridge (L-SF-MT-1-10) followed by a 0.2 μm ZetaZorb sediment filter cartridge (L-SF-ZZ-

69 0.2ABS-10) were used to process the urine after the pH of the urine was altered. A dual position 70 housings fitting mounting bracket (FA-2STA-10) with a Cole-Parmer Masterflex L/S digital 71 pump with an Easy-Load II pump head were used. All filter diameters were 25.4 cm. The 72 Spectrapure MF membranes were chosen as they were a local, commercially available, cost-73 effective option that should effectively remove suspended solids and bacteria based on the pore 74 sizes.

75 1.3 Analytical methods

Ammonia and urea results were confirmed through analysis of Total Nitrogen (TN). Four check standards were used for each TOC/TN run: TN 5, TN 1, TOC 10, and TOC 5 mg/L. The criteria for accuracy was within 10% of check standards, and the criteria for precision was samples run in duplicate.

80 The RO feed tank foulant was collected and suspended in nanopure water. Cells were then collected by centrifugation (5,000×g, 1 min) and the pellet fixed in Karnovsky's fixative 81 82 (2% paraformaldehyde, 2.5% glutaraldehyde in 0.2 M Sorenson's buffer, pH= 7.2) overnight at 83 4°C. The fixed cells were washed once with Dulbecco's Phosphate Buffered Saline (DPBS), 84 adhered to poly-L-lysine coated coverslips, and then washed two additional times with DPBS. 85 Secondary fixation was done with 1% OsO4 in DPBS for 1h at room temperature, followed by three washes with DI water. Cells were dehydrated with an ascending series of ethanol solutions 86 87 followed by critical-point drying using a CPD-020 unit (Balzers-Union, Principality of 88 Liechtenstein) with liquid CO2 as the transition fluid. The dried samples were mounted on 89 aluminum stubs and coated with 10-12 nm of gold-palladium using a Hummer II sputter coater 90 (Technics, San Jose, CA). Imaging was done on a JSM 6300 SEM (JEOL USA, Peabody, MA)

91 operated at 15 kV and images were captured with an IXRF Systems model 500 digital processer
92 (IXRF System Inc., Austin, TX).

93 1.4 Economic Analysis

The RO and NF process costs were calculated by adding the following costs together: MF operating cost, pH adjustment with NaOH cost, the RO and NF operation and maintenance costs for a system performing at 80% recovery, and the annual capital costs for the RO and NF systems. All costs were taken from published studies (cited in the discussion text) besides the cost of the NaOH which was derived based on dose and prices taken from Alibaba. The actual derivation of the operating cost is defined as: $0.06/m^3 + 0.14/m^3$ for RO ($0.11/m^3$ for NF) + $0.014/m^3$ for RO ($0.016/m^3$ for NF) = $4.72/m^3$ for RO and $4.69/m^3$ for NF.

101

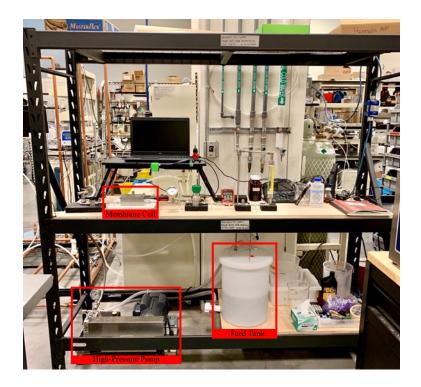
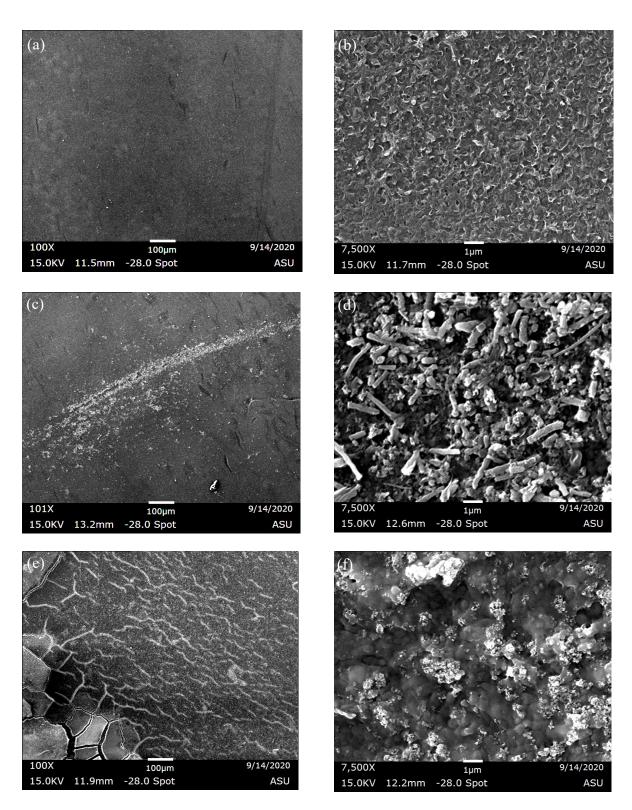
102 For the economic comparison, the total FO operating costs (\$10.11/m³, \$35.31/m³, and

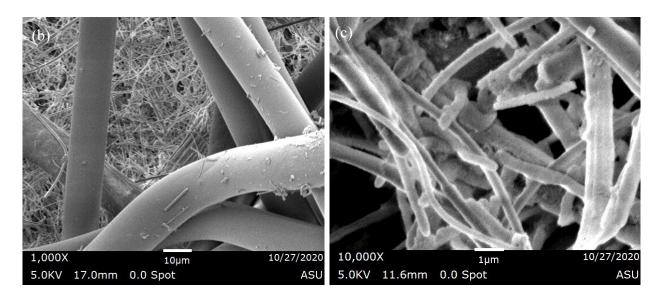
\$65.91/m³) include: MF operating cost (\$0.06/m³ based on work by Chellam et al.²), the cost of 103 pH adjustment with NaOH (\$1.50/m³ based on the required dose of NaOH to raise the pH given 104 in the methods section and the price of NaOH, \$0.3/kg³), the cost of the draw solute, and the cost 105 of FO operation (\$1.65/m³ based on work by Volpin et al.⁴). The cost of the draw solute was 106 107 derived based on chemical type (KH₂PO₄ and MgSO₄), dose (2 L of either 1.5 M or 0.75 M depending on the condition), and prices take from Alibaba. Full cost breakdowns for the FO 108 system can be found in the economic assessment by Ray et al.⁵. The cost for ammonia air 109 110 stripping was based on work by Liu et al. which determined the most optimized conditions resulted in an operating cost of \$21.65–24.24/m³ ⁶. The cost for ammonium adsorption by ion 111 112 exchange (\$11.70/m³) was derived from adding the cost of the ion exchange material (Dowex

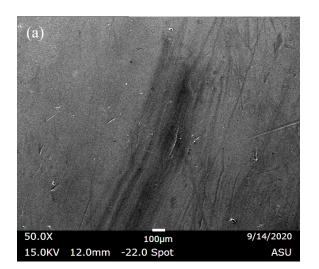
113 Mac 3 resins performed for $100 = \$/.50/m^{-3/2}$ and the cost of sulfuric acid regeneration
114 $(\$4.20/m^{3/8}).$
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

113 Mac 3 resins performed for $100 = (7.50/m^{3/7})$ and the cost of sulfuric acid regeneration

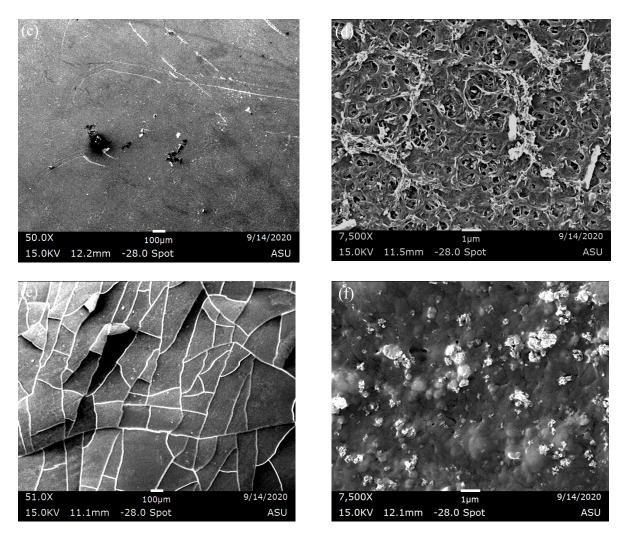
136 2. Figures and Tables

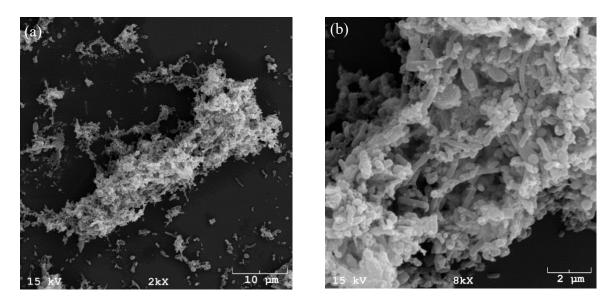





Figure S1. A picture of the RO and NF membrane setup used for all experiments,


Figure S2. Scanning Electron Microscopy (SEM) images of the reverse osmosis membrane surface for the duplicate fouling tests. (a) control 100X, (b) control 7500X, (c) MF RO condition 100X, (d) MF

	RO condition 7500X, (e) Non-MF RO condition 100X, and (f) Non-MF RO condition 7500X.
144	
145	
146	
147	
148	
149	
150	
151	
152	
153	
154	
155	
156	




Figure S3. Scanning Electron Microscopy (SEM) images of microfiltration (MF) filter that was used to pretreat the hydrolyzed human urine. (a) the MF filter, (b) sample at 1000X, and (c) sample at 10,000X.

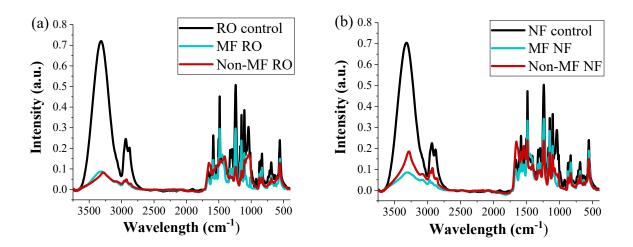


Figure S4. Scanning Electron Microscopy (SEM) images of the nanofiltration membrane surface for the duplicate fouling tests. (a) control 50X, (b) control 7500X, (c) MF NF condition 50X, (d) MF NF condition 7500X, (e) Non-MF NF condition 50X, and (f) Non-MF NF condition 7500X.

Figure S5. Scanning Electron Microscopy (SEM) images of the foulant which grew in the tank during the duplicate non-MF RO experiment. (a) sample at 2000X and (b) sample at 8000X.

Figure S6. Fourier-transform infrared spectroscopy (FTIR) of the membrane surfaces for the duplicate reverse osmosis and nanofiltration tests. (a) FTIR results for the 2 conditions and control membrane for reverse osmosis. (b) FTIR results for the 2 conditions and control membrane for nanofiltration.

168			^a Na ⁺ concentrations are elevated due to NaOt		Nanofiltration		Reverse Osmosis			Mombrano Drococo																					
169 170			vated du	Test 2	Test 1	Test 2	Test 1		Colla	Cond																					
171	Та	Та	e to Nat																												
172	bl	bl	OF aNa ⁺	1	11	11 R	11		7	3	Me																				
173	e	e e	oncent			Reverse Osmosis				Nanofi	mbran																				
	S 1	bl e Concentrations are elevated que to NaCh aquinon to ph aquisinent tia 1 qui suite in a que to NaCh aquisinent tia 1 que to NaCh aquisinen tia 1 que to NaCh aquisinen tia 1 que to NaCh aq	ratione																										Nanofiltration	Membrane Process	
	•	• •	are elev		I			1	I		ess																				
	Th	Th de	Du Du	MEF	D	Non-MF Pretreated	D	MF F	D	Non-MF Pretreated	ç																				
	e	e va	Duplicate	MF Pretreated	Duplicate	- Pretre	Duplicate	MF Pretreated	Duplicate	- Pretre	Condition																				
	ini	ini aq	Haddi	ed		ated		ed		ated	2	n																			
174	tia	tia di	11.32	11.39	11.32	11.39	11.42	11.45	11.42	11.45	PH	Initial Urine Co																			
	1			ω	ω	ω	ω	ω	ω	ω	Conc (m	Jrine																			
	uri	uri	32.20	32.17	32.20	32.17	32.69	30.74	32.69	30.74	Conductivity (mS/cm)	Com																			
	ne	ne	6		(J)	ω	N	N	N	N		Iposi																			
	co	co	3390	3340	3390	3340	2920	2980	2920	2980	Ammonia (mg/L N)	tion																			
	m	m	3380	3350	3380	3350	4300	4300	4300	4300	Total N (mg/L N)	- Fot																			
	po	ро	08	50	80	50	00	00	8	00	LN) (uling																			
175	siti	siti	1260	1230	1260	1230	1940	1990	1940	1990	TOC mg/L C	omposition - Fouling Tests																			
	on	on) (mg	S																			
	for		667	895	667	895	536	521	536	521	PO4 ³⁻ g/L PO4)																				
	the	the	0		0	œ	(7)	(7)	(7)	()	(mg/																				
	re	re	667	895	667	895	536	521	536	521	SO4 ²⁻ g/L SO4)																				
	ve	ve	2500	2520	2500	2520	2750	2770	2750	2770	Total N TOC PO_4^{3-} SO_4^{2-} CI ⁻ (mg/L N) (mg/L C) (mg/L PO ₄) (mg/L SO ₄) (mg/L)																				
	rse	rse	1080		1080	1090	1120		1120	1110	.) (mg/L)																				
	os	OS	00 80		8 8	8	0 7	0 7	0 7	0 7	L) (m																				

					ddition f	11.	11.63	11.35 11.45	рH	Pe			
					or pH	.54	63	45	-	erm			
			Ta		ddition for pH adjustment	4.51	4.72	2.72 2.89	Conductivity (mS/cm)	Permeate Com			
			bl e			4515	4540	3870 4420	Ammonia (mg/L N)	positio			
			S 3			4207	4074	4266 4156	ia Total N 4) (mg/L N)	Composition - Rejection Tests			
176			•			7	4	ດັດ		ecti			
177	3. Ref	erences	Th			52	61	50	TOC (mg/L C)	ion Te			
179 180 182	1.	H. Ray, F. Perreault and hydrolyzed <i>Environ. Chem.</i>	e	and T. H. Boyer, human urine by 1 <i>Eng.</i> , 2020, 8 , 10					nitrog	ests	ies in real fresh tration, <i>J</i> .		
18 4	2.	S. Chellam, C.	pe	Serra and M. Wi	esr	her,	E	stima	ting Co		integrated		
180 189		membrane systems, <i>WATER WORK</i>	rm	Journal America ASSN, 1998, 90 ,					D C		e - J AMER		
190	3.	Alibaba webpage,	eat	https://www.alib	aba	a.Ĉc	om		cossod		2020).		
193 194	4.	F. Volpin, H. Heo, economic	е	M. A. Johir, J. C feasibility of reco							Shon, Techno- en and water		
190		from dilute human	C	urine via forward							2019, 150 , 47-		
198 299	5.	55. H. Ray, F. Perreault	co	and T. H. Boyer,	A	man		ion Bo			Hydrolyzed		
202 203		Human Urine by Environmental	m	Forward Osmosi	s v	vith	ιA	cidif	ie Dra		ition, 565.		
205 208 209	6.	B. X. Liu, A. stripping process modeling and	po siti	Science & Technology, 2020, 54 , 14, 199565. Giannis, J. F. Zhang, V. W. E. Chang, and Y. Wang, Air for ammonia recovery from source-separated urine: optimization, J. Chem. Technol. Biotechnol., 2015, 90 , 2208									
211		2217.	5111										
213 214	7.	W. A. Tarpeh, K. Adsorbents for	on	M. Udert and K. Nitrogen Recove					-	-	-		
210	0	Environmental	for	Science & Techn	olo	ogy	, 2	017,	51, 237	/3-238	1.		
219 220 223	8.	W. A. Tarpeh, I. ion exchange for Kenya,	the	Wald, M. O. Om nitrogen recover Development En	y fi	ron	n so	ource	-separa	ated ur	ine in Nairobi,		
224 225		12011 <i>y</i> u,	re	Development En	511			5, 20	10, 0 , 1				
			ve										
			rse										
			os										
			m										