Supplementary information

The characteristics and mechanism of electrochemical peroxymonosulfate activation by Co-N@CF anode for pollutant removal

Ping Lin^{a, b}, Weihuang Zhu^{a, b, *}, Ying Gao^{a, b}, Junli Li^{a, b}, Jiawu Liu^{a, b}, Jianfeng Zhang^{a, b}, Tinglin Huang^{a,b}

^a Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China

^b Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

Corresponding authors.

E-mail addresses: zhuweihuang@xauat.edu.cn (W. Zhu),

Text S1

The electricity energy consumption was estimated by EE/O which was calculated according to following equation:

$$\frac{EE}{O} = \frac{1000Pt}{60V \lg \frac{C_0}{C_1}}$$

Where P is the actual power of current generator (kW), t is the reaction time (min), V is the volume of reaction liquid (L), C_0 is the initial concentration of TC, C_t is the concentration of TC at selected reaction time.

Text S2

The activation energy of EC/Co-N@CF and Co-N@CF processes were calculated according Arrhenius formula:

$$\ln k = -\frac{Ea}{RT} + A$$

Where k is kinetic constants at different temperature, Ea was activation energy, R is gas constant which was 8.314 Jmol⁻¹k⁻¹, T was thermodynamic temperature, A is the temperature-independent factor.

Anodes	С	Ν	0	Со
Bare CF	48.55%	0	51.45%	0
Co-N@CF	57.71%	15.76%	19.2%	7.33%

 Table S1 Element content comparison between Co-N@CF and bare CF.

PMS activator	The pollutant and its initial concentration	Degradation efficiency	PMS (mM)	Current density/Voltage	EE/O (kWh.m ⁻³)	Reaction Time	Reference
Cathode: ACF	0.042 mM CBZ	100%	50	28.6 mA.cm ⁻²	1.89	40 min	1
Anode: BDD	0.005 mM SMX	84.67%	1	5.0 mA.cm ⁻²	6.16	30 min	2
Anode: Ti/SnO2-Sb	50 mg/L PFDA	92.7%	5	10.0 mA.cm ⁻²	37.46	90 min	3
Cathode: NiCo ₂ O ₄	100 mg/L RhB	99.7%	32.5	10.0 mA.cm ⁻²	/	60 min	4
Anode: iron sheet	200 mg/L DNP	63.4%	5	4.0 mA.cm ⁻²	0.0336	15 min	5
Anode: Co-N@CF	44.4 mg/L TC	92.2%	0.4	1.0 mA.cm ⁻²	0.072	60 min	This work

Table S2 Comparison of electrochemical activation of PMS towards pollutants removal by different processes.

	OH•	SO4	O2*-	¹ O ₂
TBA	$6 \times 10^8 M^{-1} S^{-1.6}$	$7.6 \times 10^5 M^{-1} S^{-1.7}$	Not available	1.8×10 ³ M ⁻¹ S ^{-1 8}
L-Histidine	Not available	Not available	Not available	3.2×10 ⁸ M ⁻¹ S ⁻¹⁹
p-BQ	Not available	Not available	$9.0 \times 10^8 M^{-1} S^{-1.10}$	Not available
MeOH	9.7×10 ⁸ M ⁻¹ S ⁻¹	2.7×10 ⁷ M ⁻¹ S ⁻¹	Not available	Not available

 Table S3 Scavenger reagents and reaction rate constants with various radicals.

Quencher	Concentration(mM)	Kinetic constant (min ⁻¹)	R ²
TBA	0	0.11799	0.97593
	10	0.04799	0.96484
	50	0.02947	0.99194
	100	0.01533	0.99964
	0	0.11799	0.97593
	0.1	0.03227	0.98850
p-BQ	0.5	0.02184	0.99490
	1	0.01578	0.95264
	2	0.01993	0.96736
L-Histidine	0	0.11799	0.97593
	0.1	0.06721	0.95679
	0.5	0.05409	0.96546
	1	0.04264	0.93623
	5	0.04464	0.80583
$\mathrm{Na_2S_2O_3}$	0	0.11799	0.97593
	0.05	0.05005	0.99575
	0.1	0.00961	0.99493
	0.5	0.00484	0.87008
	1	0.00331	0.98793
	2	0.00387	0.94419

Table S4 The kinetic constants and regression coefficients of TC degradation with various scavengers.

Fig. S1 Schematic illustration of the synthesis of the Co-N@CF anode.

Fig. S2. The standard curve of concentration-absorbance of tetracycline.

Fig. S3. The high XPS resolution spectrum of C 1s (a) and O 1s (b) of bare CF.

Fig. S5. Degradation efficiency of TC with effect of initial TC concentration.

Fig. S6. The recyclability (a) and k (b) of Co-N@CF anode.

Fig. S7 The linear fitted curve of the degradation results of EC/Co-N@CF (a) and Co-N@CF (b) processes at various temperature.

References

- Z. Liu, H. Ding, C. Zhao, T. Wang, P. Wang and D. D. Dionysiou, Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential, *Water Research*, 2019, **159**, 111-121.
- J. Yao, Y. Zhang and Z. Dong, Enhanced degradation of contaminants of emerging concern by electrochemically activated peroxymonosulfate: Performance, mechanism, and influencing factors, *Chemical Engineering Journal*, 2021, 415, 128938.
- K. Wang, D. Huang, W. Wang, Y. Li and J. Niu, Enhanced decomposition of long-chain perfluorocarboxylic acids (C9C10) by electrochemical activation of peroxymonosulfate in aqueous solution, *Science of The Total Environment*, 2020, **758**, 143666.
- J. Di, M. Zhu, R. Jamakanga, X. Gai, Y. Li and R. Yang, Electrochemical activation combined with advanced oxidation on NiCo₂O₄ nanoarray electrode for decomposition of Rhodamine B, *Journal of Water Process Engineering*, 2020, **37**, 101386.
- J. Li, Y. Ren, L. Lai and B. Lai, Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2, 4-dinitrophenol in aqueous solution, *Journal of Hazardous Materials*, 2018, 344, 778-787.
- G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O– in Aqueous Solution, *Journal of Physical and Chemical Reference Data*, 1988, 17, 513-886.
- P. Neta, R. E. Huie and A. B. Ross, Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, *Journal of Physical and Chemical Reference Data*, 1979, **17**, 1027-1284.
- Yang, Yi, Banerjee, Gourab, Brudvig, Gary, W., Kim, Jae-Hong and Pignatello, Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate, *Environmental Science & Technology*, 2018, 52, 5911-5919.
- C. Wei, B. Song, J. Yuan, Z. Feng, G. Jia and C. Li, Luminescence and Raman spectroscopic studies on the damage of tryptophan, histidine and carnosine by singlet oxygen, *Journal of Photochemistry and Photobiology A: Chemistry*, 2007, 189, 39-45.
- Y. Wang, D. Cao, M. Liu and X. Zhao, Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C₃N₄: The role of superoxide radical and singlet oxygen, *Catalysis Communications*, 2017, **102**, 85-88.