Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Exploring carbon and nitrogen removal capacity of membrane aerated biofilm reactor for low-strength municipal

wastewater treatment

Li-Qiu Zhang^{a,b}, Xing Jiang^{a,b}, Hong-Wei Rong^{a,b}, Chun-Hai Wei *^{a,b}, Min Luo^c,

Wen-Chao Ma^c, How-Yong Ng^d

^{a.} Department of Municipal Engineering, School of Civil Engineering, Guangzhou

University, Guangzhou 510006, China

^{b.} Key Laboratory for Water Quality and Conservation of the Pearl River Delta,

Ministry of Education, Guangzhou 510006, China

^{c.} SUEZ Water Technologies (Shanghai) Co. Ltd., Shanghai 201210, China

^{d.} Department of Civil and Environmental Engineering, National University of

Singapore, Singapore 117576, Singapore

*Correspondence: weich@gzhu.edu.cn; Tel.: +86-20-3936-6656

Fig. S1. Visualization of MABR biofilm with time (a. biofilm enrichment; b. HRT=8 h; c. HRT=3h)