Modelling of a CH₄-producing microbial electrosynthesis system for energy recovery and wastewater treatment

Zhuo Li ^{1, 2, 3}, Qian Fu *,^{1, 2}, Hao Chen ^{1, 2}, Shuai Xiao ^{1, 2}, Jun Li ^{1, 2}, Xun Zhu ^{1, 2},

Qiang Liao ^{1, 2}

¹ Key Laboratory of Low-grade Energy Utilization Technologies and Systems,

Chongqing University, Ministry of Education, Chongqing 400044, China

² Institute of Engineering Thermophysics, School of Energy and Power Engineering,

Chongqing University, Chongqing 400044, China

³ Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China

* Corresponding authors: Emails: fuqian@cqu.edu.cn

Tel./fax: +86 23 65102474

Section 1: experimental operation of CH₄-producing MESs

A glass bottle with 350 mL was used as the bioreactor for a single-chamber MES, and two carbon clothes (12 cm², TMIL Ltd., Ibaraki, Japan) were used as the anode and cathode, respectively. The distance between the anode and cathode was 2 cm, and the electrodes were connected to a power source (Array 3645 A, Array Electronics, Nanjing, China) by titanium wires. To cultivate the MES, the effluent (100 mL) from a CH₄-producing MES operated for 6 months and medium (150 mL) were added into the reactor, and the output voltage of the power source was set at 0.82 V. The medium mainly contained 15 mmol L⁻¹ acetate, 50 mmol L⁻¹ PBS (19 mmol L⁻¹ KH₂PO₃, 31 mmol L^{-1} Na₂HPO₃) and other microelements [1]. Before operation, the reactor was flushed by pure N₂ to remove oxygen. The solution in reactor was exchanged by fresh medium when the current density decreased to 0.5 A m⁻². The gaseous and liquid products were analyzed per day by a gas chromatography and an ion chromatography, respectively according to our previous studies [1-3]. The pH of solution was detected using a pH-meter (PHS-2F, INESA scientific instrument Co., Ltd, Shanghai, China) by extracting 1 mL of the electrolyte from the reactor per day.

Section 2: operation and electron transfer of a CH₄-producing MES

A voltage of $0.7 \sim 1.0$ V is usually applied to a CH₄-producing MES. Fig. S1 shows the variation of the current and electrode potential of a MES operated under 0.7 V. As shown in this figure, the cathode potential is kept at ~ -1.15 V vs. Ag/AgCl during the stable operation of the MES, indicating that the cathode potential is always lower than -1.0 V vs. Ag/AgCl during the operation of MESs under typical applied voltages. In this condition, electrons are mainly transferred from cathode surfaces to cathode biofilms through the indirect electron transfer pathway [2].

Fig. S1 Variation of the current and electrode potential of a CH_4 -producing MES operated under 0.7 V

Section 3: kinetics of biocathodes

As shown in Fig. S2, when the biocathode operated at the potential higher than -0.8 V vs. Ag/AgCl, nearly no current was generated on it. When it operated at the potential lower than -0.8 V vs. Ag/AgCl, the generated current was mainly contributed to indirect electron transfer, indicating that H₂ was first generated on the biocathode, and then H₂ was further conversed to CH₄ in biofilms or bulk solution [1, 2]. In this case, we used a piecewise function to describe the kinetics current generation with -0.8 V vs. Ag/AgCl as the critical point.

Furthermore, as the conversion of H_2 to CH_4 ($CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$) was not an electrochemical reaction and methane was the main products observed in our experiments, thus we assumed the conversion of H_2 to CH_4 as a non-limiting step. Therefore, we only considered the electrochemical kinetics of hydrogen generation using the Bulter-Volmer-Monod equation.

Fig. S2 Current generation of the biocathode under different potentials.

Section 4: equation construction of pH factor

The original equations used to illustrate the influence of pH on bioanode activities was illustrated as Eq. S1 [4]:

$$r_{ut} = \begin{cases} 0, & pH < pH_{opt} - W \\ \frac{\hat{q}X_f}{2} \left(1 + \cos\left(\frac{\pi}{W}(pH - pH_{opt})\right) \right), pH_{opt} - W < pH < pH_{opt} (S1) \\ \hat{q}X_f, & pH > pH_{opt} \end{cases}$$

where, r_{ut} indicated the rate of substrate utilization, $\hat{q}X_f$ indicated the maximum rate of substrate utilization in the biofilm, W indicated a parameter for pH inhibition, and pH_{opt} indicated the optimum pH for anode biofilm.

As the microorganism activity was proportional to the substrate utilization rate which was proportional to the current density generated by bioelectrodes, we defined **<u>pH factor</u>** (dimensionless) as the value of r_{ut} divided by $\hat{q}X_f$, thus the pH factor of bioanodes was shown as Eq. S2:

$$\alpha_{pH,a} = \begin{cases} 0, & pH < pH_{opt,a} - W_{a} \\ 1 + \cos\left(\frac{\pi}{W_{a}} \cdot (pH - pH_{opt,a})\right) \\ \hline 2 \\ 1, & pH > pH_{opt,a} \end{cases}$$

To construct the equation of cathode pH factor, we first experimentally tested the variation of biocathode current under different pH [5]. Then, we modified Eq. S2 according to our experimental data and constructed Eq. S3.

$$\alpha_{pH,c} = \begin{cases} 1 + \cos\left(\frac{\pi}{W_{c}} \cdot (pH - pH_{opt,c})\right) \\ \hline \\ \hline \\ 0, & pH < pH_{opt,c} - W_{c} \le pH \le pH_{opt,c} + W_{c} \end{cases} (S3) \end{cases}$$

Section 5: illustrations of D_{i}^{eff} and S_{i}

species *i*

Species i	\$ _i	D^{eff}_{i}		Value of S_i in biofilms	
		In biofilm	In diffusion layer	Anode biofilm	Cathode biofilm
$CO_2(aq)$	$\dot{S}_{CO_2(aq)}$	$\epsilon_p^{1.5} D_{CO_2(aq)}$	$D_{CO_2(aq)}$	0	0
HC0 ₃	; В НСО <u>-</u> 3	$\epsilon_p^{1.5} D_{HCO\overline{3}}$	D _{HCO} ₃	0	0
CO_{3}^{2-}	\$3^-	$\epsilon_p^{1.5} D_{CO^2_3}^{-}$	$D_{CO^2_3}$	0	0
0H ⁻	З _{ОН} -	$\epsilon_p^{1.5} D_{OH^{-}}$	D _{OH} -	0	$rac{i_c}{2FL_{B,c}}$
H^+	$\dot{S}_{H^{+}}$	$\epsilon_p^{1.5} D_{H^+}$	D_{H^+}	$\frac{7i_a}{8FL_{B,a}}$	0
$H_2PO_4^-$; _{Н2} Ро ₄	$\epsilon_p^{1.5} D_{H_2^{PO} \frac{1}{4}}$	$D_{H_2PO_4}$	0	0
$HPO_4^2^-$	'S _{НРО²4}	$\epsilon_p^{1.5} D_{HPO^2_4^-}$	$D_{HPO^2_4}$	0	0
Ac ⁻	S _{Ac}	$\epsilon_p^{1.5} D_{Ac}$	D _{Ac}	$-rac{i_a}{8FL_{B,a}}$	0

Table S1. Illustrations of the efficient diffusion coefficient and bioelectrochemical source item of

where D_i and ϵ_p indicate the diffusion coefficient of species *i* and the porosity of biofilm, respectively. The efficient diffusion coefficient is calculated according to the Bruggeman mode.

Section 6: calculation for the resistance of biofilms and solution

The resistance of biofilms is calculated by the following equation:

$$R = \frac{k_{bio}(L_{B,a} + L_{B,c})}{A}$$

where k_{bio} is the conductivity of the biofilms (the conductivity of the anode biofilm is thought to be equal to that of the cathode biofilm); $L_{B,a}$ and $L_{B,c}$ are the thickness of the anode and cathode biofilms, respectively; A is the area of the electrode.

The resistance of biofilms is calculated by the following equation:

$$R = \frac{k_l L_{Bulk}}{A}$$

where k_l is the conductivity of the solution; L_{Bulk} is the distance of the electrodes; A is the area of the electrode.

Section 7: variation of pH and acetate concentration during the operation of a

CH₄-producing MES

Fig. S3 pH value under typical operation conditions. (A): MESs are operated with 15 mmol L^{-1} initial concentration of acetate and 50 or 100 mmol L^{-1} PBS; (B): MESs are operated with 25 mmol L^{-1} initial concentration of acetate and 50 or 100 mmol L^{-1} PBS. mM indicates mmol L^{-1}

Ref.

- Li, Z., et al., Polarity reversal facilitates the development of biocathodes in microbial electrosynthesis systems for biogas production. International Journal of Hydrogen Energy, 2019. 44(48): p. 26226-26236.
- 2. Li, J., et al., Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO_2 reduction to CH_4 in microbial electrosynthesis. Journal of CO_2 Utilization, 2020. **35**: p. 169-175.
- 3. Fu, Q., et al., A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients. Bioresource Technology, 2016. **214**: p. 629-636.
- Marcus, A.K., C.I. Torres, and B.E. Rittmann, *Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model.* Bioresource technology, 2011. 102(1): p. 253-262.
- 5. Xiao, S., et al., Parametric study of biocathodes in microbial electrosynthesis for CO_2 reduction to CH_4 with a direct electron transfer pathway. Renewable Energy, 2020. **162**: p. 438-446.