Supporting Information

Efficient capture of phosphate from wastewater by a recyclable ionic liquid functionalized polyacrylonitrile fiber: Atypical "Release and Catch" mechanism

Wenjie Zheng^{a,b}, Qianwen Wu^{a,b}, Wusong Xu^{a,b}, Qizhong Xiong^{a,b}, Yusef Kianpoor

Kalkhajeh^{a,b}, Chaochun Zhang^{a,b}, Gang Xu^{*a,b}, Weifeng Zhang^{*a,b}, Xinxin Ye^{a,b},

Hongjian Gao^{a,b}

^aAnhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, College of Resources and Environment, Anhui AgriculturalUniversity, Hefei, 230036, P. R. China. ^bResearch Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Zone, Hefei, 230036, P. R. China.

*Corresponding author. E-mail: gangxu@ahau.edu.cn; wfzhang@cau.edu.cn

1. Reagents and instruments

The supplier of Polyethyleneimine (PEI, Mw=10000) was Shanghai Dibo Biotechnology Co., LTD. KH₂PO₄, ascorbic acid and ammonium molybdate were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. NaOH, NaHCO₃ and Na₂CO₃ were provided by Shanghai SuYi Chemical Reagent Co., Ltd. Antimonyl potassium tartrate, K₂CO₃and NaCl were bought from Saan Chemical Technology Co., Ltd, Tianjin Guanfu Technolicy Devel Opment Co., Ltd and Shanghai Pilot Chemical Corporation, respectively. H₂SO₄, HCl and HNO₃ were supplied by Xilong Scientific Co., Ltd. Sinopharm Group Chemical Reagent Co., Ltd provided K₂SO₄ and KCl.

2. Synthesis of ionic liquid functionalized polyacrylonitrile fiber

Fig. S1. Synthesis of ionic liquid functionalized polyacrylonitrile fiber.

3. The picture of various fibers

Fig. S2. The picture of (a) PANF, (b) PAN_AF, and (c) PAN_AF-Cl.

4. Typical procedure for the acid exchange capacity (Amine content)

Dried PAN_AF (100 mg) was immersed into 100 mL of 0.0200 mol L⁻¹ prepared HCl for 40

min. The neutralized fiber was then filtered out and the acid concentration of the remaining

solution was determined by titration with 0.0200 mol L^{-1} prepared NaOH. The exchange capacity was calculated based on the consumption of the acid amount. The final concentration of HCl was calibrated with standard Na₂CO₃ solution, and the concentration of NaOH was calibrated with the calibrated HCl.

5. Weight gain and acid exchange

Entry	Fiber	Weight gain (%)	Acid exchange capacity (mmol g ⁻¹)
1	PANF		
2	PAN _A F	4.3	0.73
3	PAN _A F	8.7	1.20
4	PAN _A F	18.2	1.76
5	PAN _A F	20.9	1.87
6	PAN _A F	26.6	2.29
7	PAN _A F	33.4	2.48
8	PAN _A F-Cl	2.52	

Table S1The weight gain and acid exchange capacity of the prepared fibers.

6. X-ray diffraction spectroscopy (XRD) and thermostability analysis

Fig. S3 (A). The XRD patterns of (a) PANF, (b) PAN_AF, (c) PAN_AF-Cl, (d) PAN_AF -P, (e) PAN_AF-Cl-

1, and (f) PAN_AF-Cl-5; (B) The TGA spectra of (a) PANF, (b) PAN_AF, and (c) PAN_AF-Cl.

7. Adsorption kinetics

Fig. S4. The fitting curve of pseudo-first-order kinetic model for adsorption phosphate.

8. Adsorption kinetics

Temperature (K)	$q_{e,exp} (\mathrm{mg} \ \mathrm{P} \ \mathrm{g}^{-1})$	First order kinetic		Second order kinetic		
		$k_l (\min^{-1})$	R ²	qe	k_2 (g ·mg ⁻¹ ·min ⁻¹)	R ²
288	5.81	0.5000	0.9603	6.1335	0.1592	0.9979
298	6.52	0.5038	0.6117	6.7449	0.2796	0.9980
308	6.87	0.5962	0.7006	7.0427	0.3072	0.9993

Table S2 Kinetic parameters for the adsorption of phosphate by PAN_AF-Cl.

9. Adsorption thermodynamic

Fig. S5. The plot of lnK_c vs. 1/T and plot of lnK_2 vs. 1/T for thermodynamic parameters.

10. Parameters of theadsorptionthermodynamic

T(K)	$\Delta G^{o} (kJ \text{ mol}^{-1})$	∆Hº(kJ mol ⁻¹)	$\Delta S^{\circ} (J \text{ mol}^{-1} \text{ K}^{-1})$	E _a (kJ mol ⁻¹)
288	-0.8463			
298	-1.9409	22.39	81.01	24.42
308	-2.4539			

 Table S3 Parameters of theadsorptionthermodynamic.

11. Adsorption isotherm

_

 Table S4 Parameters of the adsorption isotherm models.

Isotherm model	Parameter	Value
	$q_{max} (\mathrm{mg} \mathrm{P} \mathrm{g}^{-1})$	15.49
Langmuir	K_l (L mg ⁻¹)	2.8468
	R ²	0.9869
	n	1.9069
Freundlich		2.3658
	R ²	0.9768

12. Coexisting anions

Fig. S6. Effect of coexisting anions on phosphate adsorption.

Fig. S7. Effect of SO₄²⁻ with different concentration on phosphate adsorption

13. The atomic percent of the fibers tested by XPS

Entry	Commite	Atomic p	Atomic percent (%)					
	Sample	С	Ν	0	Cl	Р		
1	PANF	73.78	7.71	18.51	0	0		
2	PAN _A F	72.80	7.69	19.51	0	0		
3	PAN _A F-Cl	70.40	7.2	20.96	0.44	0		
4	PAN _A F-P	63.80	9.26	26.49	0.02	0.45		

Table S5 The atomic percent of the fibers tested by XPS.

14. The mass percentage of the fibers determined by EDS

Table S6 The mass percentage of the fibers determined by EDS.

Entry	~ .	Wt (%)	Wt (%)					
	Sample	С	Ν	0	Cl	Р		
1	PANF	67.3	27.8	4.9	0	0		
2	PAN _A F	66.9	22.6	10.5	0	0		
3	PAN _A F-Cl	69.6	18.1	9.3	2.9	0		
4	PAN _A F-P	61.2	21.9	14.4	1.9	0.5		
5	PAN _A F-Cl-1	64.5	19.0	11.8	1.8	0		
6	PAN _A F-Cl-5	68.9	19.3	7.8	4.1	0		

15. Optimization of HCl eluent

Eluent solutionconcentration (mol L-1)	Volume (mL)	T (h)	Desorption ratio (%)
0.05	30	5	76.87
0.10	30	5	81.89
0.20	30	5	89.63
0.30	30	5	95.66
0.30	10	5	90.69
0.30	20	5	91.34
0.30	30	1	88.51
0.30	30	3	89.41

Table S7 Desorption of phosphate from the PAN_AF-Cl using HCl solution^a.

^aDried 20 mg of phosphate adsorbed PAN_AF-Cl was immersed in HCl solution.

16. The adsorption limit test of PAN_AF-Cl on phosphate.

Table S8 Effect of adsorbent dosage on adsorption efficiency of the PAN_AF-Cl for phosphate^a.

Entry	Fiber weight (mg)	Ce (mg P L ⁻¹)	Removal efficiency
1	10	0.0519	89.0%
2	20	0.0497	89.5%
3	30	0.0426	91.0%
5	50	0.0326	93.1%
6	60	0.0184	96.1%

^aThe fiber adsorbent was put into 10 mL of phosphate (0.4733 mg P L⁻¹) solution for 8 h under 25 °C.

17. The practical application of PAN_AF-Cl in domestic sewage

Table S9 The content of main anions in domestic sewage^a.

Anions	Cl-	F-	Br ⁻	NO ₃ -	SO42-	CO32-	PO ₄ ³⁻
Concentration	35.5 mg L ⁻¹	0.98 mg L ⁻¹	6.92 mg L ⁻¹	2.47 mg L ⁻¹	12.40 mg L ⁻¹	9.58 mg L ⁻¹	4.11 mg P L ⁻¹

^aThe real wastewater is taken from waste water treatment plantin Hefei (pH=7.51), the concentration of Cl⁻, F⁻, Br⁻, NO₃⁻ and SO₄²⁻ were measured by ion chromatograph (ICS 1100, Thermo Fisher), the PO₄³⁻ was tested by molybdenum blue colorimetry using visible spectrophotometer, the CO₃²⁻ was measured by titration.

Entry	Fiber weight (mg)	Ce (mg P L ⁻¹)	Removal efficiency
1	10	3.40	17.3%
2	20	1.97	52.1%
3	30	1.12	72.7%
4	40	0.65	84.2%
5	50	0.36	91.2%
6	60	0.046	98.8%

Table S10 Practical application of PAN_AF-Cl with different weights in domestic sewage.

^aThe fiber adsorbent was put into 10 mLof phosphate (4.11mg P L⁻¹) solution for 8 h under 25 °C.

18. Comparison with other phosphate removal adsorbents in the literature

Adsorbent	Equilibrium time	$q_{max} (mg P g^{-1})$	Run	Reference
Al-crosslinked PVA hydrogel beads	8 h	11.5	5	[1]
Poly-aluminum chloride sludge	48 h	1.78		[2]
Fe(H)O-PsAX@75	4h	4.12		[3]
Quaternary amine modified chitosan beads	45min	11.37	10	[4]
Hybrid anion exchanger	24 h	4	5	[5]
hybrid anion exchange resin	5 min	7.17		[6]
Anion exchange resin (ZMAE)	24h	26.1	5	[7]
Renewable molybdate complexes	500min	26.58	5	[8]
PAN _A F-Cl	5 min	15.49	5	This study

Table S11 Comparison with other phosphorus removal adsorbents in the literature.

Reference

[1] B. Hui, Y. Zhang, L. Ye, Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal, Chemical Engineering Journal, 2014, 235, 207-214.

[2] X. Li, Y. Xie, F. Jiang, B. Wang, Q. Hu, Y. Tang, T. Luo, T. Wu, Enhanced phosphate removal from aqueous solution using resourceable nano-CaO₂/BC composite: Behaviors and mechanisms, Science of The Total Environment, 2020, 709, 136123.

[3] D. Chen, J. Jia, X. Liao, L. Zhou, Z.-T. Hu, B. Pan, Phosphate removal by polystyrene anion exchanger (PsAX)-supporting Fe-loaded nanocomposites: Effects of PsAX functional groups and ferric (hydr)oxide crystallinity, Chemical Engineering Journal, 2020, 387, 124193.

[4] A. Sowmya, S. Meenakshi, An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions, Journal of Environmental Chemical Engineering, 2013,1, 906-915.

[5] S. Wiriyathamcharoen, S. Sarkar, P. Jiemvarangkul, T.T. Nguyen, W. Klysubun, S. Padungthon, Synthesis optimization of hybrid anion exchanger containing triethylamine functional groups and hydrated Fe(III) oxide nanoparticles for simultaneous nitrate and phosphate removal, Chemical Engineering Journal, 2020, 381, 122671.

[6] A. Sendrowski, T.H. Boyer, Phosphate removal from urine using hybrid anion exchange resin, Desalination, 2013, 322, 104-112.

[7] T.H. Bui, S.P. Hong, J. Yoon, Development of nanoscale zirconium molybdate embedded anion exchange resin for selective removal of phosphate, Water Res, 2018, 134, 22-31.

[8] W. Zhu, X. Huang, Y. Zhang, Z. Yin, Z. Yang, W. Yang, Renewable molybdate complexes encapsulated in anion exchange resin for selective and durable removal of phosphate, Chinese Chemical Letters, 2021, 32, 3382–3386.