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1. Influence of pH on oxidative removal of cyanotoxin by Fe!''-B*/H,0,
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Figure S1: Removal of cyanotoxins by Fe'-B*/H,0, at different pH values. (a) CYL (0.24
uM) and (b) ANA (7.1 uM) removal by Fel'-B*/H,0, (5.0 uM/ 5.0 mM) at pH 8.5 (o), 9.0
(A), 9.5 (0), 10.5 (©) and 11.5 (x) (0.01 M) (mean =+ standard deviation of three independent
runs).



2. Immobilizing Fe'''-B* catalyst onto the functionalised silica gel

To generate the immobilized Fe'll-B* catalyst, the silica gel was firstly functionalized (1-3),
and then Fel-B* catalyst was adsorbed from aqueous solution (4-6). In Step 1, 5 g silica gel
was treated with 7 mL DMOAP solution in 63 mL water for 2 hrs at 60 °C with stirring (300
rpm). The functionalized silica gel, Si-DMOAP, was recovered by filtration and washed
thoroughly with water (3x50 mL) and acetone (3x50 mL) and then dried in a vacuum oven at
110 °C overnight. In Step 2, 2.5%1077 mole, 1.25x10° mole or 2.5%x10-% moles Fe'-B* in pH
9.5 buffer solution (50 mL, 0.01 M Na,CO3/NaHCO3) was stirred with Si-DMOAP (240 mg)

at 300 rpm. Fe'-B*/Si-DMOAP was collected by filtration after 15 min.
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Scheme S1: Covalent attachment of quaternary ammonium reagent to silica gel and
immobilisation of Fe'-B* catalyst onto the functionalised silica gel.

3. Coverage assessment of Fe!'-B*/Si-DMOAP

The amount of Fe''-B* adsorbed onto Si-DMOAP was quantified by determining the residual
Felll-B* remaining in the filtrate and the Fel-B* released during washing of Fe!l-B*/Si-
DMOAP with buffer solution. The residual Fe'-B* in each solution was determined by
monitoring the rate of bleaching of orange II under standard conditions. To wash Fe!l-B*/Si-
DMOAP, it was re-suspension in buffer solution (50 mL) for 15 minutes and then filtered and
the concentration of leached Fe''-B* determined. This process was repeated until the amount
of Felll-B* released each time was constant. The total released Fell-B* was calculated by
summing the amount of Fe'-B* not initially adsorbed and that released into each of the buffer
solutions (Scheme S2). To determine the Fe''-B* concentration of each solution, orange II was
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added to give a final concentration of 45 uM and pH 9.5 0.01 M Na,CO;/NaHCOj; buffer used
to make the solution up to 100 mL. Dye bleaching was initiated by adding H,O, (e.g., 0.102
mL of 0.979 mol L-! solution) to each solution to give a final concentration of 1.00 mM and
the absorbance at 464.5 nm recorded at set intervals. The amount of Fe!''-B* in the filtrates was
determined by measuring the initial rate of bleaching and then using a calibration curve to

determine the Fell-B* concentration.
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Scheme S2: The process flow diagram for the immobilized Fe''-B* coverage testing.
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Figure S2: Assessment of the amount of Fe''-B* adsorbed on Si-DMOAP. (a) The initial rates
of orange II dye (45 uM) bleaching catalysed by residual Fe-B* in the filtrate from
immobilized Fe'l-B* catalyst generation, by different amount of initial Fe'-B* (2.5x10 (o),
1.25%10¢ (A) and 2.5x107 (o) mole dissolved Fe'-B* and 240 mg Si-DMOAP) and H,0, (1
mM) at pH 9.5 (0.01 M); (b) a calibraiton curve of the initial rates of orange II dye (45 uM)
bleaching by Fel-B* standards (2.5%10, 2.5x108, 4x108, 1.25x1077 and 2.5%10"7 mole) and
H,0, (1.0 mM) in 100 mL pH 9.5 0.01 M Na,CO;/NaHCOj buffer solution; (¢) the amount of
Fel-B* (mole) adsorbed onto functionalised silica gel (mg) (mean + standard deviation of three
independent runs).

Based on the assessment of the amount of Fe!''-B* (2.5x107 mole) adsorbed onto Si-DMOAP,
the coverage ratio that was measured for the fourth filtration indicated a constant amount of
Fell-B* was released. This was confirmed by comparing to the results for the fifth and sixth
filtration. Consequently, Fel'-B*/Si-DMOAP collected from the fourth filtration was applied

to the treatment of cyanotoxins.

4. Solid-phase extraction procedure

The CYL-SPE method was modified from Metcalf, Beattie (7) and Foss and Aubel (8) with
the application of Hypersep Hypercarb SPE cartridges (Thermo Fisher Scientific, NZ Ltd.): 1)
cartridges were conditioned with two column volumes of methanol and rinsed with two column

6



volumes of water; 2) samples were loaded onto cartridges at a flow rate of 1 — 2 mL/min; 3)
cartridges were washed with one column volume of water and fully air-dried prior to elution;
and 4) CYL was eluted with 5 % formic acid in methanol (3x500 pL). The ANA-SPE using
Strata-X-CW polymeric weak cation SPE cartridges (Phenomenex Australia Ply Ltd.) was
conducted as follows: (1) one column volume of methanol followed by one column volume of
water was applied to condition the cartridges; (2) samples were loaded after adjustment to pH
6 ~ 7; (3) one column volume of water followed by one column volume of methanol was used
to wash the cartridges; and (4) samples were eluted with 5 % formic acid in methanol (3x500
uL). For all SPE samples, the eluate was evaporated to dryness in a speed vacuum concentrator

(Savant SPD131DDA, ThermoFisher) and then reconstituted in methanol (1 mL) for analysis.



5. Cyanotoxin removal by Fe"'-B*/H,0, with NOM or with oxidized NOM at pH 9.5
(0.01 M)
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Figure S3: Cyanotoxin removal by Fe'''-B*/H,0, with NOM or with oxidized NOM at pH 9.5
(0.01 M). —0— represents sample of CYL (0.24 uM) with NOM (3.5 ppm) removal by Fe'!l-
B*/H,0, (5 uM/ 5 mM), —x— represents sample of ANA (7.1 uM) with NOM (30 ppm)
removal by Fel'-B*/H,0, (5 uM/ 5 mM)), - -0- - represents sample of CYL (0.24 uM) removal
by oxidized NOM (3.5 ppm), - -x- - represents sample of ANA (7.1 uM) removal by oxidized
NOM (30 ppm) (mean + standard deviation of three independent runs).

Oxidized NOM was produced by NOM (3.5 ppm NOM designated for CYL; 30 ppm NOM
designated for ANA) reacting with Fe-B*/H,O, (5 uM/ 5 mM) at pH 9.5 0.01 M
Na,CO;3;/NaHCOj; buffer. Reacting NOM was taken at intervals and treated with catalase. The
oxidized NOM was then mixed with CYL (0.24 uM) or ANA (7.1 uM) thoroughly. Cyanotoxin

was quantified by LC-MS.



6. Fluorophore signatures of NOM oxidized by Fe!"'-B*/H,0,
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Figure S4: Fluorophore signatures of NOM oxidized by Fe'-B*/H,0,. (a) NOM (3.5 ppm)
with Fe'l-B* (5 uM) at pH 9.5 (0.01 M); (b) NOM (3.5 ppm) oxidized by Fe'-B*/H,0, (5
uM/ 5 mM) at pH 9.5 (0.01 M); (c) NOM (30 ppm) with Fel'l-B* (5 uM) at pH 9.5 (0.01 M);
(d) NOM (30 ppm) oxidized by Fe'-B*/H,0, (5 uM/ 5 mM) at pH 9.5 (0.01 M). Ex 270 —
280/Em 310 — 320 for tyrosine-like and protein-like materials, Ex 270 — 285/Em 340 — 360 for
tryptophan-like and protein-like matter, Ex 320 — 350/Em 400 — 450 for fulvic-like matter, Ex
310 — 320/Em 380 — 420 and Ex 330 — 390/Em 420 — 500 for humic-like matter (9).
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7. Positive mode Q-Exactive tandem mass spectra of CYL
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Figure S5: (a) Reaction product ion spectrum MS! for ions eluting at 2.27 min and
reconstructed ion chromatograms showing elution profiles of three ions (m/z 416, 448 and 420);
(b) CID product ion spectra MS? for ion m/z 448 eluting at 2.25 min, and m/z 420 eluting at
2.25 min.

With reference to the software Mass FrontierTM and Xcalibur, the MS2 fragment m/z
350.1462 (1b, 1b’, or 1b’*) could be generated via a number of transformation routes including
hydrogen abstraction at C8 and hydrogen sulfate removal from the product with m/z 448.1131
(1) and, water elimination from the product with m/z 368.1565 (1a). In the MS2 spectrum
targeting the ion at m/z 420.1182 (Figure S5b), MS2 ions at m/z 340.1617 (2a), m/z 274.0856
(2b), and m/z 194.1290 (2¢) were observed. These were most likely produced by the breakdown
of the ion at m/z 420.1182 through processes such as sulfate elimination, uracil ring
modification and opening of the tricyclic ring.
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8. Positive mode Q-Exactive tandem mass spectra of ANA
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Figure S6: (a) Reaction product ion spectra MS! for ions eluting at 2.42 and 3.76 min and
reconstructed ion chromatograms showing elution profiles of two ions (m/z 166 and 182); (b)
CID product ion spectra MS? for ion m/z 182 eluting at 2.42 min and 3.76 min.

Two epoxy-ANA (m/z 182.1180 and m/z 182.1179) ions were observed with different
retention times (Figure S6a). Each m/z 182 ion was selected in turn for MS2 fragmentation and
each yielded the same legitimate product ions (Figure S6b), m/z 182.1180 > 164.1074,

146.0966, 140.1074, and 122.0969, m/z 182.1179 > 164.1072, 146.0965, 140.1073,

and

122.0968, which are in accord with the results obtained in previous studies of the MS2
fragmentation products for the epoxy-ANA molecular ion ((M+H]+, m/z 182) (10, 11).
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