Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

1 Supplementary information

2 A comparative study of the degradation efficiency of chlorinated organic

3 compounds by bimetallic zero-valent iron nanoparticles

- 4 Abhilash Venkateshaiah^{a†}, Daniele Silvestri^{a†}, Stanislaw Wacławek^{a*}, Rohith K.
- 5 Ramakrishnan^a, Kamil Krawczyk^a, Padmanapan Saravanan^b, Mirosława Pawlyta^c, Vinod. V.T.
- 6 Padil^a, Miroslav Černík^a and Dionysios D. Dionysiou^{d*}
- 7 aInstitute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec,
- 8 Studentská 1402/2, 461 17 Liberec, Czech Republic
- 9 bDefence Metallurgical Research Laboratory, Hyderabad 500058, India
- 10 °Materials Research Laboratory, Silesian University of Technology, Konarskiego 18a St., 44–100, Gliwice,
 11 Poland
- 12 dEnvironmental Engineering and Science Program, Department of Chemical and Environmental Engineering
- 13 (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
- 14 *corresponding authors: stanislaw.waclawek@tul.cz; <u>dionysios.d.dionysiou@uc.edu</u>
- 15 [†]These authors contributed equally to this work
- 16

17

- 18
- 19
- 20
- 21

- 22 SI Content:
- 23 Text S1
- 24 Table S1 Physical and chemical properties of chlorinated solvents.
- Table S2 Pseudo-first-order kinetic constants (k_{obs}) calculated for PCE degradation by various
 nZVI/X (nZVI/X 1 g/L).
- Table S3 Comparison of the price of metal precursors used in this work (Sigma-Aldrich
 16/09/2021).
- 29 Figure S1 EDS of a) nZVI, b) nZVI/Pd, c) nZVI/Ni, d) nZVI/Ag and e) nZVI/Cu.
- 30 Figure S2 XRD patterns of a) nZVI, b) nZVI/Pd, c) nZVI/Ni, d) nZVI/Ag and e) nZVI/Cu.
- 31 Figure S3 Vibrating-sample magnetometer hysteresis loops for a) nZVI, b) nZVI/Pd, c)
 32 nZVI/Ni, d) nZVI/Ag and e) NZVI/Cu.
- 33 Figure S4 Pseudo-first-order model for PCE reduction in synthetic water by a) nZVI/Pd, b)
 34 nZVI/Ni, c) nZVI/Ag and d) nZVI/Cu.
- 35 Figure S5 Pseudo-first-order model for PCE reduction in real groundwater by a) nZVI/Pd, b)
 36 nZVI/Ni, c) nZVI/Ag and d) nZVI/Cu.
- Figure S6 a) TCE and b) DCE determination during the PCE degradation. nZVI, nZVI/Pd and
 nZVI/Ni do not show TCE formation during the test.
- 39
- 40
- 41
- 42

43 Text S1: Chemical oxygen demand (COD), NH₄⁺, and Fe²⁺ were determined using the
44 commercial kits LCK414, LCK305 and LCK320 (Hach-Lange), respectively. Chlorides,
45 nitrates and sulfates were determined by Thermo Scientific[™] Dionex[™] ICS-2100 with
46 Regent-Free[™] IC (RFIC[™]) system, equipped with the conductivity detector.

Table S1 Physical and chemical properties of chlorinated solvents.

VOCs	Molecular formula and 3D model	Molecular weight (g/mol)	Density at 25 °C (g/L)	Boiling point (°C)	Melting point (°C)	Water solubility (mg/L)	Approxim ate half- lives (yr)	Max. contaminant concentration (μg/L) in drinking water*
PCE		165.8	1.62	121	-19	150	0.7	5
TCE	C ₂ HCl ₃	131.4	1.46	87	-85	1100	0.7	5
DCE	C ₂ H ₂ Cl ₂ cis-1,2	96.9	1.21	54	-65	3500	1.1	70
	trans-1,2					6260	-	100

	×							
	C ₂ H ₃ Cl							
VC	×	62.5	0.91	-13	-153	2700	0.55	2

49 *(USA regulation)

50

- 51 **Table S2**: Pseudo-first-order kinetic constants (k_{obs}) calculated for PCE degradation by various
- 52 nZVI/X (nZVI/X 1 g/L).

Nanoparticles	Initial	Final	nZVI/X	$k_{\rm obs}$ (h ⁻¹)
	concentration ¹	concentration ²	(g/L)	
	(mg/L)	(mg/L)		
Blank	24	18.9	1	-
nZVI	24	17.87	1	-
nZVI/Pd	24	0.28	1	0.184 ± 0.006
nZVI/Ni	24	0	1	0.245 ± 0.017
nZVI/Ag	24	5.29	1	0.065 ± 0.018
nZVI/Cu	24	16.5	1	0.016 ± 0.001

- 53 ¹Initial concentration detected by GC/MS, ²final concentration detected after 24 h (0 = below
- 54 the detection limit)

56 Table S3: Comparison of the price of metal precursors used in this work (Sigma-Aldrich

57 16/09/2021).

Compound	g	Price (USD)	USD/g	Purity
Potassium tetrachloropalladate(II)	10	768.7	76.8	98%
Nickel(II) chloride	250	354	1.4	98%
Silver nitrate	500	1630	3.26	≥99%
Copper(II) chloride	1000	143.9	0.14	97%

61 Figure S1 EDS of a) nZVI, b) nZVI/Pd, c) nZVI/Ni, d) nZVI/Ag and e) nZVI/Cu.

64 Figure S2 XRD patterns of a) nZVI, b) nZVI/Pd, c) nZVI/Ni, d) nZVI/Ag and e) nZVI/Cu.

66 Figure S3 Vibrating-sample magnetometer hysteresis loops for a) nZVI, b) nZVI/Pd, c)

73 Figure S4 Pseudo-first-order model for PCE reduction in synthetic water by a) nZVI/Pd, b)
74 nZVI/Ni, c) nZVI/Ag and d) nZVI/Cu.

Figure S5 Pseudo-first-order model for PCE reduction in real groundwater by a) nZVI/Pd, b)
nZVI/Ni, c) nZVI/Ag and d) nZVI/Cu.

- 81 Figure S6 a) TCE and b) DCE determination during the PCE degradation. nZVI, nZVI/Pd
- 82 and nZVI/Ni do not show TCE formation during the test.