1	SUPPORTING INFORMATION
2	
3	Sustainably closed loop recycling of hierarchically
4	porous polymer microbeads for efficient removal of
5	cationic dyes
6	Jikang Li ^{a#} , Qin Yang ^{a#} , Sheng Chen ^a , Kerry McPhedran ^{b,c} , Yingchun Gu ^a , Rongfu
7	Huang ^{d*} , Bin Yan ^{a*}
8	^a National Engineering Laboratory for Clean Technology of Leather Manufacture,
9	College of Biomass Science and Engineering, Sichuan University, Chengdu,
10	610065, China
11	^b Department of Civil, Geological & Environmental Engineering, College of
12	Engineering, University of Saskatchewan, Saskatoon, SK, Canada
13	^c Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK,
14	Canada
15	^d MOE Key Laboratory of Deep Earth Science and Engineering, College of
16	Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065,
17	China
18	
19	
20	
21	
22	S 1
	51

Fig. S1 Standard curve of cationic dyes: (a) Methylene blue; (b) Malachite green; (c) Methyl violet 2B.

(1)

(2)

(3)

27 The equation obtained by curve fitting.

- 29 Malachite green: A=0.055c-0.0234
- 30 Methyl vioiet 2B: A=0.0848c-0.0094
- 31 A is the absorbance of the solution, and C(mg/L) is the concentration of the solution.

Fig. S2. (a) Nitrogen adsorption-desorption isotherm obtained for PCP-IDA adsorbents; (b) Pore

size Distribution of PCP-IDA.

86 Fig. S3. (a) Freundlich fitting curve in isothermal adsorption model. (b)The fitting result of the pseudo-

- 87 first-order model; (c) The fitting result of the intra-particle diffusion kinetic model.

- -

111 Table S1. Estimated values of parameters for different kinetic model
--

	Kinetic model	Parameters		
		$Q_e(mg \cdot g^{-1})$	$k_1(mg \cdot g^{-1})$	R ²
	rseudo-nrst-order	99.8	0.776	0.72615
		$Q_e(mg \cdot g^{-1})$	$k_2(g \cdot mg^{-1} \cdot min^{-1})$	R ²
	Pseudo-second-order	101.01	0.1077	0.99988
		$C(mg \cdot g^{-1})$	$k_i(mg \cdot g^{-1} \cdot min^{-1/2})$	R ²
	Intra-particle diffusion	68.514	4.0339	0.39864
112				
113				
114				
115				
116				
117				
118				
119				
120				
121				
122				
123				
125				
126				
127				
128				
129				
130				
131				
132				
133				
134				
135				
136				
137				
138				
139				
141				
142				

	Langmuir			Freundlich			
	Q _m (mg/g)	K _L (L/mg)	\mathbb{R}^2	n	K _F (L/mg)	R ²	
	384.62	0.1354	0.99897	8.7489	200.68	0.88672	
145							
146							
14/							
149							
150							
151							
152							
153							
154							
155							
156							
157							
158							
159							
161							
162							
163							
164							
165							
166							
167							
168							
169							
170							
171							
172							
174							
175							
176							
177							
178							
179							
180							
181							

Table S2. Isothermal adsorption fitting curve data.

183 Table S3. The comparison of the adsorption capacity of PCP-IDA adsorbent with other reported

Adsorbent/mass	MB	pН	Temperatur	Adsorption	Kinetic	References
	concentration/		e	capacity (mg/g)	(min)	
	volume					
Nanocomposites	40 mg/L	6	Room	MB: 111.11	20	1
poly(GDMA)/MCM-41/20	40 mL		temperature			
mg						
MAA/GMA-g-PET	40 mg/L	10	298K	MB: 52.1	60	2
fibers/100 mg	25mL					
Cell-g-AASO3H-co-	20 mg/L	7	298K	MG: 46.23	120	3
GMA/50 mg	50 mL			MV: 53.53		
Poly GMA/DVB/200 mg	5 mg/L	7	Room	MG: 13.6	50	4
	25 mL		temperature			
MCTSms-PMAA/4.5 mg	200 mg/L	12	Room	MB: 211.11	100	5
	40 mL		temperature			
ATP@CCS/7.5 mg	200 mg/L	10	298.15K	MB: 215.73	120	6
	20 mL					
PES/GO porous particles/5	150 μmol/L	7	303K	MB: 62.5	3600	7
mg	20mL					
UiO-66/MIL-101(Fe)/10	50 mg/L	9	298K	MB: 448.71	30	8
mg	20mL					
A/γ-Fe ₂ O ₃ /f-CNT	230 mg/L	5.2	298K	MB: 396.7	2880	9
composite beads/50 mg	50 mL					
MPGB biosorbent/50 mg	50 mg/L	7	293K	MB: 231.5	60	10
	100mL					
P(G-E)@IDA/10 mg	100 mg/L	7	298K	MB: 384.62	15	In this work
	10 mL			MG: 333.33		
				MV: 322.58		

184 adsorbents with similar structure or size.

192 Fig. S4. (a) The chemical structure of MG, MV, ARB and MO dyes; (b) Effect of initial PH of dye

195	
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	

194 capacity of four dyes by PCP-IDA adsorbent.

- 213 Section S.2 The related models and parameters of PCP-IDA adsorbent for MG and MV dye adsorption
- 214 were fitted.

216 Fig. S5. (a) Pseudo-first-order model of MG; (b) Pseudo-second-order model of MG; (c) Intra-particle

²¹⁸ Intra-particle diffusion model of MV.

	Dye	Kinetic model	Parameters			
-	MG	Pseudo-first-order	$Q_e(mg \cdot g^{-1})$	$k_1(mg \cdot g^{-1})$	R ²	
			99.32	0.0772	0.68914	
		Pseudo-second-order	$Q_e(mg \cdot g^{-1})$	$k_2(g \cdot mg^{-1} \cdot min^{-1})$	R ²	
			100	0.025	0.99997	
		Intra-particle	$C(mg \cdot g^{-1})$	$k_i(mg \cdot g^{-1} \cdot min^{-1/2})$	R ²	
		diffusion	78.891	2.6216	0.30598	
	MV 2B	Pseudo-first-order	$Q_e(mg \cdot g^{-1})$	$k_1(mg \cdot g^{-1})$	R ²	
			99.8361	0.1313	0.96142	
		Pseudo-second-order	$Q_e(mg \cdot g^{-1})$	$k_2(g \cdot mg^{-1} \cdot min^{-1})$	R ²	
		-	101.01	0.0076	0.99979	
		Intra-particle	$C(mg \cdot g^{-1})$	$k_i(mg \cdot g^{-1} \cdot min^{-1/2})$	R ²	
		diffusion	61.408	4.7948	0.52966	
242						
243						
244						
245						
246						
247						
240						
250						
251						
252						
253						
254						
255						

241 Table S4. Estimated values of parameters for different kinetic models.

258 Fig. S6. The fitting model of isothermal adsorption of MG and MV dyes: (a) Langmuir model; (b)

259 Freundlich models.

321	Fig. S8. The cyclic adsorption performance of PCP-IDA adsorbent for MG and MV dyes.
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	

352 **Reference**

353	1.	Z. Cherifi, B. Boukoussa, A. Mokhtar, M. Hachemaoui, F. Z. Zeggai, A. Zaoui, K. Bachari
354		and R. Meghabar, Preparation of new nanocomposite poly(GDMA)/mesoporous silica and its
355		adsorption behavior towards cationic dye, React. Funct. Polym., 2020, 153, 104611.
356	2.	M. Arslan, Preparation and Application of Glycidyl Methacrylate and Methacrylic Acid
357		Monomer Mixture-Grafted Poly(ethylene terephthalate) Fibers for Removal of Methylene
358		Blue from Aqueous Solution, J. Appl. Polym. Sci., 2011, 119, 3034-3042.
359	3.	R. K. Sharma and R. Kumar, Functionalized cellulose with hydroxyethyl methacrylate and
360		glycidyl methacrylate for metal ions and dye adsorption applications, Int. J. Biol. Macromol.,
361		2019, 134 , 704-721.
362	4.	D. Husaain, M. Najam-ul-Haq, A. Saeed, F. Jabeen, M. Athar and M. N. Ashiq, Synthesis of
363		poly GMA/DVB and its application for the removal of Malachite Green from aqueous
364		medium by adsorption process, Desalin. Water Treat., 2015, 53, 2518-2528.
365	5.	S. Y. Yu, J. L. Cui, H. Jiang, C. S. Zhong and J. Meng, Facile fabrication of functional
366		chitosan microspheres and study on their effective cationic/anionic dyes removal from
367		aqueous solution, Int. J. Biol. Macromol., 2019, 134, 830-837.
368	6.	Q. Zhou, Q. Gao, W. J. Luo, C. J. Yan, Z. N. Ji and P. Duan, One-step synthesis of amino-
369		functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of
370		chitosan for removal of methylene blue from wastewater, Colloid Surf. A, 2015, 470, 248-257.
371	7.	X. Zhang, C. Cheng, J. Zhao, L. Ma, S. D. Sun and C. S. Zhao, Polyethersulfone enwrapped
372		graphene oxide porous particles for water treatment, Chem. Eng. J., 2013, 215, 72-81.
373	8.	A. S. Eltaweil, E. M. Abd El-Monaem, G. M. El-Subruiti, M. M. Abd El-Latif and A. M.
374		Omer, Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for
375		adsorptive removal of methylene blue dye from aqueous solutions, RSC Adv., 2020, 10,
376		19008-19019.
377	9.	S. Alvarez-Torrellas, M. Boutahala, N. Boukhalfa and M. Munoz, Effective Adsorption of
378		Methylene Blue dye onto Magnetic Nanocomposites. Modeling and Reuse Studies, Appl. Sci-
379		Basel., 2019, 9, 4563.
380	10.	C. Li, X. J. Wang, D. Y. Meng and L. Zhou, Facile synthesis of low-cost magnetic biosorbent
381		from peach gum polysaccharide for selective and efficient removal of cationic dyes, Int. J.
382		Biol. Macromol., 2018, 107, 1871-1878.
383		