
1 Novel insights in chlorine dioxide based disinfection mechanism-

2 Investigation of the reaction with amino acids

3	Supplementary information
4 5 6 7	Mischa Jütte ¹ , Mohammad S. Abdighahroudi ¹ , Janine V. Große ¹ , Christoph Schüth ^{2,3} , and Holger V. Lutze ^{1,3,4}
8	¹ Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and
9	pollutants, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
10 11	² Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany
12	³ IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany
13	⁴ Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen,
14	Germany
15 16	

- 18 Figure S1: Mechanistic pathway of intrinsic formation of FAC during the reaction of phenol
- 19 with CIO_2 according to Wajon et al. 1982.¹ In the first step, phenol reacts with one molecule
- 20 of CIO₂ under the formation of CIO₂- and a phenoxy-radical. Afterward, the radical stabilizes
- $21\,$ in the para position. The phenoxy-radical reacts with another molecule of ClO_2 and forms
- $22\,$ an OCIO-adduct in para-position. Eventually, the adduct disproportionates to FAC and
- 23 benzoquinone.

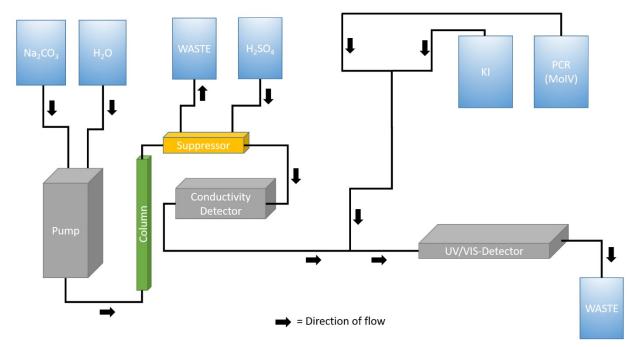
24 Table S1: Chemicals used in this research project.

Name	Purity [%]	Purpose of use	Manufacturer
Acetic acid	> 99.7	Eluent (LC)	Alfa Aesar (Haverhill, Massachusetts, USA)
Acetonitrile	> 99.9	Eluent (LC)	Honeywell Riedel-de Haen (Charlotte, North Carolina, USA)
Ammonium- molybdate(VI)-	> 99	Post column catalyzer	Acros Organics (Fair Lawn, New Jersey, USA)
tetrahydrate		Catalyzei	New Jersey, USA)
Disodium phosphate	> 99	pH buffer	Merck (Darmstadt, Germany)
Glycine	> 99	HOCI Scavenger	Alfa Aesar (Haverhill, Massachusetts, USA)
Indol	> 99	Competitor, model compound	Sigma-Aldrich (St. Louis, Missouri, USA)
Monosodium phosphate	98	pH buffer	Acros Organics (Fair Lawn, New Jersey, USA)
N-Acetyl-L-Tryptophan	≥ 99	Compound under study	Sigma-Aldrich (St. Louis, Missouri, USA)
N-Acetyl-L-Tyrosine	> 99	Compound under study	TCI (Tokyo, Japan)
Nitrogen	99.999	CIO ₂ production	Air Liquide (Paris, France)
Ortho-phosphoric acid	85	pH buffer	VWR (Radnor, Pennsylvania, USA)
Phenol	> 99 %	Competitor	Sigma-Aldrich (St. Louis, Missouri, USA)
Potassium iodide	> 99	Post column reagent	Acros Organics (Fair Lawn, New Jersey, USA)
Sodium acetate	> 99	Eluent (LC)	Sigma-Aldrich (St. Louis, Missouri, USA)
Sodium carbonate	99.5	Eluent (IC)	Acros Organics (Fair Lawn, New Jersey, USA)
Sodium chlorate	> 99	Calibration standard	Acros Organics (Fair Lawn, New Jersey, USA)
Sodium chloride	> 99.5	Calibration standard	Honeywell Fluka (Charlotte, Narth Carolina, USA)
Sodium chlorite	80	Calibration standard	Honeywell Fluka (Charlotte, Narth Carolina, USA)
Sodium hypochlorite	11 – 15 % FAC	Oxidant	Alfa Aesar (Haverhill, Massachusetts, USA)
Sodium persulfate	> 99	CIO ₂ production	Carl Roth (Karlsruhe, Germany)
Sodium phosphate	96	pH buffer	Sigma-Aldrich (St. Louis, Missouri, USA)
Sulfamethoxazole	> 98	Competitor	Sigma-Aldrich (St. Louis, Missouri, USA)
Sulfuric acid	95	Chemical suppressor (IC) / Post column reaction	VWR (Radnor, Pennsylvania, USA)

27 Table S2: Instruments used in this research project.

Name	Component	Description	Manufacturer
Ion-Chromatography	Autosampler	Dionex AS-AP	Thermo scientific (Waltham, Massachusetts, USA)
	Column	Asupp7 – 250mm/4.0 µm	Massachusetts, USA) Metrohm (Herisau, Swiss)
	Column department	Dionex ICS-6000 DC	Thermo scientific (Waltham, Massachusetts, USA)
	Conductivity detector		Thermo scientific (Waltham, Massachusetts, USA)
	Pump 1 (Eluent)	Dionex ICS-6000 SP	Thermo scientific (Waltham, Massachusetts, USA)
	Pump 2 (Suppressor)	Dionex AXP	Thermo scientific (Waltham, Massachusetts, USA)
	Pump 3 (Post column reaction)	Peristaltic pump	Ismatec (Wertheim, Germany)
	Software	Chromeleon Console	Thermo scientific (Waltham, Massachusetts, USA)
	Suppressor	Dionex ACRS 500	Thermo scientific (Waltham, Massachusetts, USA)
	UV detector	Dionex UltiMate 3000 Diode Array Detection	Thermo scientific (Waltham, Massachusetts, USA)
Liquid Chromatography	Autosampler	Dionex AS-AP	Thermo scientific (Waltham, Massachusetts, USA)
	Column	Acclaim Trinity P1 3μm – 2.1 μm × 150 mm	Thermo scientific (Waltham, Massachusetts, USA)
	Column department	Dionex ICS-6000 DC	Thermo scientific (Waltham, Massachusetts, USA)
	Pump 1 (Eluent)	Dionex ICS-6000 SP	Thermo scientific (Waltham, Massachusetts, USA)
	Software	Chromeleon Console	Thermo scientific (Waltham, Massachusetts, USA)
	UV detector	Dionex UltiMate 3000 Diode Array Detection	Thermo scientific (Waltham, Massachusetts, USA)
Photometer	Photometer	Specord 200 Plus	AnalytikJena (Jena, Germany)
pH-meter	pH-meter	Terminal 740	WTW Series inoLab

			(Weilheim, Germany)
Balance	Balance	SM2285Di-ION-C	VWR (Radnor,
			Pennsylvania, USA)
Reaction tubes	15 mL CellStar®	Polypropylene	Greiner bio-one
	tubes		(Frickenhausen,
			Germany)
HPLC Vials	1.5 mL Short	Amber glass	VWR (Radnor,
	thread vial		Pennsylvania, USA)
HPLC Vials	1.5 mL Short	Polypropylene	VWR (Radnor,
	thread vial		Pennsylvania, USA)


29 Table S3: Liquid chromatography methods used in this research project. Eluent A = 20

30	mM sodium	acetate	buffer pH	5; Eluent	B = ACN.
----	-----------	---------	-----------	-----------	----------

No. Method	Total time		Gradient program			
	[min]	Time	Flow rate	%A	%B	(Ret. Time [Min])
		0.000	0.3	80	20	Phenol (4.0),
		6.000	0.3	80	20	indol (7.9),
1	31	10.000	0.4	40	60	SMX (10.5),
		22.000	0.4	40	60	NAL-Trp
		26.000	0.3	80	20	(22.6)
		0.0	0.3	80	20	
		6.0	0.3	80	20	Phenol (4.0),
2	22	10.0	0.4	40	60	NAL-Ťyr Ó
		14.0	0.4	40	60	(14.6)
		18.0	0.3	80	20	

Table S4: Ion chromatography methods used in this research project. Eluent A =pure H₂O; Eluent B = 4 mM Na₂CO₃. The retention times for Cl-Gly and ClO_2^- are given for 34 conductivity and UV detector (CD/UV).

No. Method	Total time		Compound			
	[min]	Time	Flow rate	%A	%B	(Ret. Time [Min])
		0.000	0.75	70	30	CI-Gly
1 40	16.000	0.75	70	30	(11.3/12.0), CIO ₂ -	
	16.001	0.75	0	100		
	32.000	0.75	0	100	(12.3/12.9),	
		32.001	0.75	70	30	- Cl⁻ (15.5), ClO ₃ ⁻ (25.3)

41 Figure S2: Set up of IC-CD-PCR-UV. A gradient pump is transporting the eluent A: H₂O

42 and eluent B: 4 mM Na₂CO₃ towards the column. After the column, a chemical

suppression is installed using 20 mM H_2SO_4 (1.0 mL/min). Then the analysts are detected

44 by a conductivity detector. To increase the sensitivity for CI-Gly and CIO_2^- a post column

45 reaction is installed, whereby a 0.27 M potassium iodide (KI) and a catalyzing solution

46~ (containing 0.027 mM ammonium molybdate(VI) tetrahydrate and 0.1 M $\rm H_2SO_4$) are added

47 to the system (0.1 mL/min each solution). During this reaction lodide is oxidized to

48 triiodide, which has a high absorption at λ = 352 nm (ϵ_{352} = 26,000 M⁻¹ cm⁻¹).²

61 Text S1: Calculation of necessary scavenger concentrations

62 In most experiments, scavengers are needed to scavenge the intrinsic formed FAC. For this 63 purpose glycine is used (*k* (glycine + HOCI) = $1.5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$)³. To calculate the necessary 64 concentration of glycine ([Scavenger]), Formula S1 is used.

65

$$f(Scavenger + HOCl) = \frac{k (Scavenger + HOCl) \times [Scavenger]}{\sum (k (Compound + HOCl) \times [Compound])}$$

66

67 (Formula S1)

68

69 The compound under study ([Compound]) was always 0.0001 M, the reaction rate constants 70 (*k*(compound + HOCl) are taken from Pattison et al. 2002^4 (*k* (NAL-tyrosine + HOCl) = 4.7×10^1 71 M⁻¹ s⁻¹ & *k* (NAL-tryptophan + HOCl) = 7.8×10^3 M⁻¹ s⁻¹ both at pH 7.2 – 7.4). According to Formula 72 S1 it was calculated how much glycine was needed to scavenge a fraction (f(Scavenger + HOCl)) 73 of 99.9 % HOCl (f = 0.999).

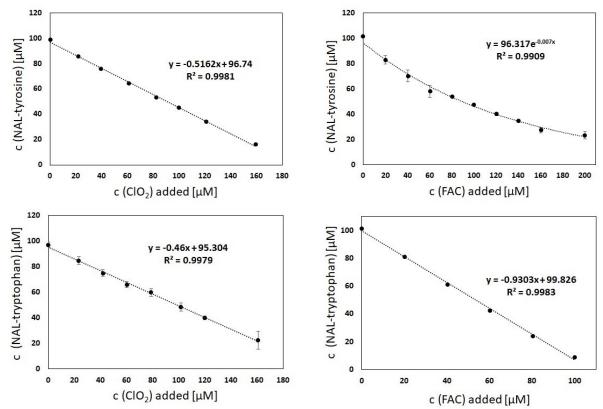
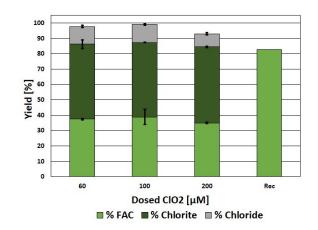
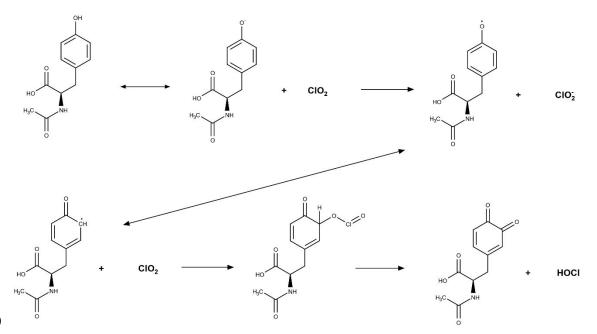



Figure S3: Stoichiometry results. Stoichiometry has been determined for both amino acids with oxidants at pH 7. Reaction conditions: 0.1 mM of the corresponding amino acids, 5 mM of phosphate buffer, and, in the case of determining the stoichiometry for CIO_2 , 10 mM glycine was added to scavenge intrinsic formed FAC, which would bias the final results. All experiments have been carried out in triplicates, and the error bars are representing the standard deviation of the results.

82 Table S5: Measured impurities of CIO₂ stock solution. Percentage is based on the initial

83 concentration of CIO₂, which was measured to be 17.225 mM.

	Cŀ	C/O2 ⁻	CIO3_	FAC	Total
Impurity [%]	0.153 ±	0.118 ±	2.166 ±	_	2.438
inpunty [76]	0.002	0.003	0.038		



86 Figure S4: Chlorine balance of CIO₂ during the reaction with indol at pH 7. The reaction

87 solution contained 10 mM glycine, 5 mM phosphate buffer, and 0.1 mM indol. The experiment has

88 been carried out in triplicates, and the error bars are representing the standard deviation of the

89 results.

90

- Figure S5: Mechanistic pathway of intrinsic formation of FAC during the reaction of phenol with CIO₂ adapted from Napolitano et al. 2005.⁵ In the first step, NAL-tyrosine reacts with
- 92 one molecule of ClO₂ under the formation of ClO₂⁻ and a phenoxy-radical. Afterwards the
- 94 redistribution of the radical location to a more stable position takes place. The phenoxy-
- 95 radical reacts with another molecule of CIO₂ and forms an OCIO-adduct in ortho-position.

96 Eventually, the adduct breaks down to a keto group and HOCI.

		HO HO H_3C HO H_3C HH HO H_3C HH HH HH HH HH HH HH H
97		
98 99		Figure S6: Chemical structure of NAL-tyrosine (left) and vanillin (right).
100		
101	Liter	ature
102	(1)	Wajon, J. E.; Rosenblatt, D. H.; Burrows, E. P. Oxidation of Phenol and
103	()	Hydroquinone by Chlorine Dioxide. Environ. Sci. Technol. 1982, 16 (7), 396–402.
104 105 106	(2)	Abdighahroudi, M. S.; Schmidt, T. C.; Lutze, H. V. Determination of Free Chlorine Based on Ion Chromatography—Application of Glycine as a Selective Scavenger. <i>Anal. Bioanal. Chem.</i> 2020 , <i>412</i> (28), 7713–7722.
107	(3)	Deborde, M.; von Gunten, U. Reactions of Chlorine with Inorganic and Organic
108		Compounds during Water Treatment-Kinetics and Mechanisms: A Critical Review.
109		<i>Water Res.</i> 2008 , <i>42</i> (1–2), 13–51.
110	(4)	Pattison, D. I.; Davies, M. J. Absolute Rate Constants for the Reaction of
111		Hypochlorous Acid with Protein Side Chains and Peptide Bonds. Chem. Res.
112		<i>Toxicol.</i> 2001 , <i>14</i> (10), 1453–1464.
113	(5)	Napolitano, M. J.; Green, B. J.; Nicoson, J. S.; Margerum, D. W. Chlorine Dioxide
114		Oxidations of Tyrosine, N-Acetyltyrosine, and Dopa. <i>Chem. Res. Toxicol.</i> 2005 , <i>18</i>
115		(3), 501–508.
116		