1	Microbial utilisation of particulate substrate utilisation during anaerobic plug-flow feeding and aerobic fully-
2	mixed conditions in aerobic granular sludge operation
3	Supplementary Information
4	Manuel Layer ¹ , Antoine Brison ¹ , Mercedes Garcia Villodres ¹ , Eberhard Morgenroth ^{1,2} , Nicolas Derlon ¹
5	¹ Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133,
6	CH-8600 Dübendorf, Switzerland
7	² Institute of Environmental Engineering, ETH Zürich, CH-8093 Zürich, Switzerland

8 Email of the first author: manuel.layer@eawag.ch

S1 Distribution of granules and flocs during AGS-SBR operation 9

10 Figure S1: Distribution of X_{TSS} of flocs (A) and granules (B), as well as of influent X_B (C) within 11 the four sub-reactors of the AGS model during the different operational phases of the default 12 scenario.

S2 Kinetic model 13

14 Table S1: Kinetic (Gujer) matrix, model parameters and calculated variables of the mathematical 15 model "SUMO1 XBSBSVFASH2 sep" used in this study. The tables are in "multimedia component 16 1". 17

S3 S_{VFA} storage kinetics of PAO and GAO 18

$$= q_{PAO,XSTO,PAO} \cdot X_{PAO} \cdot \frac{S_{VFA}}{K_{VFA,PAO} + S_{VFA}} \cdot \frac{\frac{X_{PP}}{X_{PAO}}}{K_{PP} + \frac{X_{PP}}{X_{PAO}}} \cdot \frac{1}{1 + exp^{\text{trial}}} \left(\frac{X_{STO,PAO}}{X_{PAO}} - K_{i,XSTO,PAO,PAOmax}\right)$$
Equ. S1

$$r_{storage, X_{STO,GAO}} = q_{PAO,XSTO,GAO} \cdot X_{GAO} \cdot \frac{S_{VFA}}{K_{VFA,GAO} + S_{VFA}} \cdot \frac{1}{1 + exp^{\text{ind}}} \left(\frac{X_{STO,GAO}}{X_{GAO}} - K_{i,XSTO,GAO,GAOmax} \right) * s_2 \right)} \cdot \frac{1}{1 + exp^{\text{ind}}} \left(\frac{X_{STO,GAO}}{X_{GAO}} - K_{i,XSTO,GAO,GAOmax} \right) * s_2 \right)}$$

21 22 Equ. 82

19 20

23 where $q_{PAO,XSTO,PAO}$ and $q_{GAO,XSTO,GAO}$ are the maximum rate of S_{VFA} storage of $X_{STO,PAO}$ and

- X_{STO,GAO} by PAO and GAO, respectively (both 4 d⁻¹), S_{VFA} the VFA concentration (g m⁻³), 24
- KVFA,PAO and KVFA,GAO the half-saturation of SVFA storage for PAO and GAO, respectively 25
- 26 (both 5 g m⁻³), X_{PP} the poly-phosphate concentration (g m⁻³), K_{PP} the half-saturation of poly-

- 27 phosphate for PAO (0.01 gP m⁻³), K_{i,XSTO,PAO,PAOmax} the half-inhibition of maximum X_{STO,PAO}
- 28 content of PAO (0.60 gCOD gCOD⁻¹), K_{i,XSTO,GAO,GAOmax} the half-inhibition of maximum
- 29 $X_{STO,GAO}$ content of GAO (0.50 gCOD gCOD⁻¹), s₁ and s₂ the logistic slope of the logistic
- 30 inhibition of GAO and PAO (500), respectively, K_{ORP,GAO} the logistic half-saturation of ORP
- 31 switching of GAO (-100 mV), ORP the oxidation reduction potential (mV) and $s_{ORP,GAO}$ the
- 32 logistic slope of the ORP switching of GAO (0.1).

33 S4 Microbial community composition of the default scenario

Figure S2: Microbial composition (nitrifiers (NITO), OHO, GAO and PAO) of the flocs, and
 granule layers 1-4 of the default scenario.

36