Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Occurrence of Per- and Polyfluoroalkyl Substances

in Water: A Review

Yifei Wang ^a, Juhee Kim ^b, Ching-Hua Huang ^b, Gary L. Hawkins ^c, Ke Li ^d, Yongsheng Chen ^b, Qingguo Huang ^{a,*}

^a Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA

^b School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

^c Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA

^d College of Engineering, University of Georgia, Athens, GA 30602, USA

				Me	thod		Manual
Analyte	Acronym	Chemical Abstract Services Registry Number (CASRN)	533 a	537.1 ^b	8327 °	1633 ^d	QSM ^e
Perfluorobutanoic acid	PFBA	375-22-4	~		✓	\checkmark	✓
Perfluoropentanoic acid	PFPeA	2706-90-3	\checkmark		\checkmark	\checkmark	\checkmark
Perfluorohexanoic acid	PFHxA	307-24-4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluoroheptanoic acid	PFHpA	375-85-9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluorooctanoic acid	PFOA	335-67-1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluorononanoic acid	PFNA	375-95-1		\checkmark	\checkmark	\checkmark	\checkmark
Perfluorodecanoic acid	PFDA	335-76-2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluoroundecanoic acid	PFUnA	2058-94-8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluorododecanoic acid	PFDoA	307-55-1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluorotridecanoic acid	PFTrDA	72629-94-8		\checkmark	\checkmark	\checkmark	\checkmark
Perfluorotetradecanoic acid	PFTeDA	376-06-7		\checkmark	\checkmark	\checkmark	\checkmark
Perfluorobutanesulfonic acid	PFBS	375-73-5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	\checkmark		\checkmark	\checkmark	\checkmark
Perfluorohexanesulfonic acid	PFHxS	355-46-4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	\checkmark		\checkmark	\checkmark	\checkmark
Perfluorooctanesulfonic acid	PFOS	1763-23-1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Perfluorononanesulfonic acid	PFNS	68259-12-1			\checkmark	\checkmark	\checkmark
Perfluorodecanesulfonic acid	PFDS	335-77-3			\checkmark	\checkmark	\checkmark
Perfluorododecanesulfonic acid	PFDoS	79780-39-5				\checkmark	
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	4:2FTS	757124-72-4	\checkmark		\checkmark	\checkmark	\checkmark
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	6:2FTS	27619-97-2	\checkmark		\checkmark	\checkmark	\checkmark
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	8:2FTS	39108-34-4	\checkmark		\checkmark	\checkmark	\checkmark
Perfluorooctanesulfonamide	FOSA	754-91-6			\checkmark	\checkmark	\checkmark
N-methylperfluorooctanesulfonamide	MeFOSA	31506-32-8				\checkmark	\checkmark
N-ethyl perfluorooctanesulfonamide	NEtFOSA	4151-50-2				\checkmark	
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6		\checkmark	\checkmark	\checkmark	\checkmark
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9		\checkmark	\checkmark	\checkmark	\checkmark
N-methyl perfluorooctanesulfonamidoethanol	NMeFOSE	24448-09-7				\checkmark	
N-ethyl perfluorooctanesulfonamidoethanol	NEtFOSE	1691-99-2				\checkmark	

Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	\checkmark	\checkmark	\checkmark
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1	\checkmark		\checkmark
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5	\checkmark		\checkmark
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6	\checkmark		\checkmark
4,8-dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	\checkmark	\checkmark	\checkmark
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11Cl-PF3OUdS	763051-92-9	\checkmark	\checkmark	\checkmark
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	9Cl-PF3ONS	756426-58-1	\checkmark	\checkmark	\checkmark
Perfluoro (2-ethoxyethane) sulfonic acid	PFEESA	113507-82-7	\checkmark		\checkmark
3-Perfluoropropyl propanoic acid	3:3FTCA	356-02-5			\checkmark
2H,2H,3H,3H-Perfluorooctanoic acid	5:3FTCA	914637-49-3			\checkmark
3-Perfluoroheptyl propanoic acid	7:3FTCA	812-70-4			\checkmark

^a USEPA ¹ ^b USEPA ² ^c USEPA ³ ^d USEPA ⁴ ^e USDoD ⁵

Requirement ^a	Specification	Objective	Acceptance Criteria		Me	thod		Manual
				533	537.1	8327	1633	
	Initial Demonst	tration of Capability (IDC)		b	с	d	e	QSM ^f
Establish retention times for branched isomers (RTBI)	Each time chromatographic conditions change	To minimize the problem that all product ions in the linear PFOS are produced in all branched PFOS isomers.	All isomers of each analyte must elute within the same multiple reaction monitoring (MRM) window.	✓	V	✓	~	~
Demonstration of low system background (LSB)	Analyze a Laboratory Reagent Blank (LRB) after the highest standard in the calibration range.	To determine if interferences are introduced from the laboratory environment, the reagents, glassware, or extraction apparatus.	Demonstrate that the method analytes are less than one-third of the minimum reporting level (MRL) or limit of quantification (LOQ).	V	V	V	V	¥
Precision (Pre.)	Extract and analyze 7 replicate Laboratory Fortified Blanks (LFBs) near the mid-range concentration.	Percent relative standard deviation must be ≤20%.	✓	✓	✓	√	¥	
Accuracy (Acc.)	Calculate mean recovery for replicates used in the demonstration of precision.	✓	✓	✓	✓	¥		
Initial Demonstration of Peak Asymmetry Factor (PAF)	Calculate the peak asymmetry factor for the first two eluting chromatographic peaks in a mid-level calibration standard.	To avoid broad, split, or fronting peaks, and to ensure each method analyte is observed in its MS/MS window.	Peak asymmetry factor of 0.8 - 1.5.		~			
Minimum Reporting Level/Limit of Quantification (MRL/LOQ)	Fortify and analyze 7 replicate LFBs at the proposed MRL/LOQ concentration. Confirm that the Upper Prediction Interval of Results (PIR) and Lower PIR meet the recovery criteria.	To confirm the minimum concentration that may be reported as a quantified value for a method analyte.	Prediction interval of results within 50- 150%.	V	✓	~	✓	✓

Table S2. QA/QC procedures in Method 533, 537, 8327, and Manual QSM.

Calibration Verification (CV)	Analyze a calibration standard prepared independently from the primary calibration solutions.	To verify the integrity of the primary calibration standards.	Results must be within 70–130% of the true value.	✓	~	✓	√	✓
Mass Calibration	Calibrate the mass scale of the MS with calibration compounds and procedures described by the manufacturer. Mass calibration range must bracket the ion masses of interest. The most recent mass calibration must be used for every acquisition in an analytical run.	To ensure the measurement system response provides valid data of known and documented quality.	Mass calibration must be verified to be ±0.5 amu of the true value, by acquiring a full scan continuum mass spectrum of a PFAS.					~
Mass Spectral Acquisition Rate	Applied to each method analyte and IDA.	To identify each method analyte and IDA.	A minimum of 10 spectra scans are acquired across each chromatographic peak.					\checkmark
	(Ongoing QC						
Initial calibration (IC)	Use the isotope dilution calibration technique to generate a linear or quadratic calibration curve. Use at least 5 standard concentrations.	To determine if reanalyzing the calibration standards, restricting the range of calibration, or performing instrument maintenance is needed.	When each calibration standard is calculated as an unknown using the calibration curve, analytes fortified at or below the MRL/LOQ should be within 50–150% of the true value. Analytes fortified at all other levels should be within 70–130% of the true value.	✓	✓	✓	✓	~
LRB	Include one LRB with each extraction batch. Analyze one LRB with each analysis batch.	To determine if interferences are introduced from the laboratory environment, the reagents, glassware, or extraction apparatus.	Demonstrate that all method analytes are below one-third the Minimum Reporting Level (MRL), and that possible interference from reagents and glassware do not prevent identification and quantitation of method analytes.	V	~	•	V	¥
LFB	Include one LFB with each extraction batch.	To ensure high precision and accuracy of measurements.	For analytes fortified at concentrations ≤2 x the MRL/LOQ, the result must be within 50– 150% of the true value; 70–130% of the true value if fortified at concentrations greater than 2 x the MRL/LOQ.	¥	¥	¥	√	¥

Continuing Calibration Check (CCC)	Verify initial calibration by analyzing a low- level CCC (concentrations at or below the MRL/LOQ for each analyte) at the beginning of each analysis batch. Subsequent CCCs are required after every tenth field sample and to complete the batch.	To verify instrument sensitivity prior to the analysis of samples.	The lowest level CCC must be within 50– 150% of the true value. All other levels must be within 70–130% of the true value.	✓	~	~	¥	✓
lsotope performance standards (IPS)	IPS are added to all standards and sample extracts.	To ensure instrument performance, and to calculate the recovery of the isotope dilution analogues through the extraction procedure.	Peak area counts for each isotope performance standard must be within 50– 150% of the average peak area in the initial calibration.	✓	~		~	
Isotope dilution analogues (IDA)	IDA are added to all samples prior to extraction.	To measure analyte concentration using the ratio of the peak area of the native analyte to that of an isotopically labeled analogue.	50%–200% recovery for each analogue	V	V	V	V	~
Laboratory Fortified Sample Matrix (LFSM)	Include one LFSM per extraction batch. Fortify the LFSM with method analytes at a concentration close to but greater than the native concentrations (if known).	To determine whether the sample matrix contributes bias to the analytical results.	For analytes fortified at concentrations ≤2 x the MRL, the result must be within 50–150% of the true value; 70–130% of the true value if fortified at concentrations greater than 2 x the MRL.	✓	✓	✓	V	V
Laboratory Fortified Sample Matrix Duplicate (LFSMD) or Field Duplicate (FD)	Include at least one LFSMD or FD with each extraction batch.	To assess method precision when the method analytes are rarely found at concentrations greater than the MRL/LOQ.	For LFSMDs or FDs, relative percent differences must be ≤30% (≤50% if analyte concentration ≤2 x the MRL).	✓	✓		✓	V
Field Reagent Blank (FRB)	Analyze the FRB if any analyte is detected in the associated field samples.	To determine if method analytes or other interferences are introduced	If an analyte detected in the field sample is present in the associated FRB at greater	✓	✓	✓	✓	V

		into the sample from shipping, storage, and the field environment.	than one-third the MRL, the results for that analyte are invalid.					
PAF	Calculate the peak asymmetry factor for the first two eluting chromatographic peaks in a mid-level calibration standard.	To avoid broad, split, or fronting peaks, and to ensure each method analyte is observed in its MS/MS window.	Peak asymmetry factor of 0.8 - 1.5.		~			
CV	Perform a CV at least quarterly.	To verify the integrity of the primary calibration standards.	Results must be within 70–130% of the true value.	✓	✓	V	√	V
Post Spike Sample	Only applied to aqueous samples not prepared by SPE that have reported value	To ensure high precision and	When analyte concentrations are calculated as < LOQ, the post spike for that analyte					
	of < LOQ for analyte(s).	accuracy of measurements.	must recover within 70- 130% of its true value.					√
Retention Time Window Width	Conducted for every field sample, standard, blank, and QC sample.	To ensure the total response is quantitated for each method analyte.	Analytes must elute within 0.1 minutes of the associated EIS. This criterion applies only to analyte and labeled analog pairs.			√		✓

^a RTBI = Establish Retention Times for Branched Isomers; LSB = Demonstration of Low System Background; Pre. = Precision; Acc. = Accuracy; PAF = Peak Asymmetry Factor; MRL/LOQ = Minimum Reporting Level/Limit of Quantification; CV = Calibration Verification; IC = Initial Calibration; LRB = Laboratory Reagent Blank; LFB = Laboratory Fortified Blank; CCC = Continuing Calibration Check; IPS = Isotope Performance Standards; IDA = Isotope Dilution Analogues; LFSM = Laboratory Fortified Sample Matrix. ^b USEPA ¹

° USEPA ²

^d USEPA ³

^e USEPA ⁴

f USDoD 5

					ID	C ^b						Ongo	ing QC ^b			
Study	Water Body ^a	PFAS Analyte Count	RTBI	LSB	Pre.	Acc.	MRL/L OQ	CV	IC	LRB	LFB	CCC	IDA	LFSM/F D	FRB	CV
Hansen, et al. ⁶	S	2						\checkmark	\checkmark			\checkmark				\checkmark
Boulanger, et al. ⁷	S	8						\checkmark	\checkmark					\checkmark	\checkmark	\checkmark
Kannan, et al. ⁸	S	4							\checkmark							
Simcik and Dorweiler	S	7							\checkmark					\checkmark	\checkmark	
Boulanger, et al. ¹⁰	W	8							\checkmark	\checkmark						
Sinclair, et al. 11	S	4				\checkmark			\checkmark				\checkmark			
Sinclair and Kannan	W	8				\checkmark			\checkmark				\checkmark			
Schultz, et al. ¹³	W	12	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Nakayama, et al. ¹⁴	S	10			\checkmark	\checkmark		\checkmark	\checkmark				\checkmark		\checkmark	\checkmark
Loganathan, et al. ¹⁵	W	10							\checkmark				\checkmark			
Plumlee, et al. ¹⁶	S, G, W	8			\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark		
Post, et al. ¹⁷	S, G	1								\checkmark			\checkmark		\checkmark	
Quiñones and Snyder	S, G, D	8		\checkmark			\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
Lindstrom, et al. 19	S	10		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Furl, et al. ²⁰	S, W	13		\checkmark			\checkmark	\checkmark	\checkmark							
Appleman, et al. ²¹	W, D	16		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Sun, et al. ²²	S, D	16	\checkmark						\checkmark				\checkmark			
Glassmeyer, et al. ²³	W	15		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table S3. PFASs in WWTPs, surface water, ground water, and DWTPs across the United States.

Elmoznino, et al. ²⁴	W	16		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark		\checkmark			
Boone, et al. ²⁵	D	17		✓	~	✓	~	✓	✓	✓	\checkmark	~	✓	\checkmark	✓	✓
Goodrow, et al. ²⁶	S	13		√	\checkmark	√	√	\checkmark	√	\checkmark	\checkmark	√	√	\checkmark	\checkmark	~
Schwichtenberg, et al. 27	S	50	✓		\checkmark	✓		\checkmark	✓				✓			✓
Bai and Son ²⁸	S	17							✓				\checkmark			

^a S = Surface water; W = WWTP; G = Ground water; D = DWTP.

^b RTBI = Establish Retention Times for Branched Isomers; LSB = Demonstration of Low System Background; Pre. = Precision; Acc. = Accuracy; MRL/LOQ = Minimum Reporting Level/Limit of Quantification; CV = Calibration Verification; IC = Initial Calibration; LRB = Laboratory Reagent Blank; LFB = Laboratory Fortified Blank; CCC = Continuing Calibration Check; IDA = Isotope Dilution Analogues; LFSM = Laboratory Fortified Sample Matrix.

Table S4. Source water and PFAS influent concentrations in WWTPs in the United States.

			Influent Concentration Range	
Study	Site and Location	Detected PFASs	(ng/L)	Source of Wastewater
Boulanger, et al. ¹⁰	WWTP (Iowa)	PFOA, PFOS, N-EtFOSAA	$10^{0} - 10^{2}$	Domestic, commercial
Sinclair and Kannan	6 WWTPs (New York)	PFOA, PFOS, PFHxS, PFNA, PFDA, PFUnA, 8:2 FTCA, 8:2 FTUCA	$10^{0} - 10^{1}$	Domestic, industrial, commercial
Schultz, et al. ¹³	10 WWTPs	PFOA, PFOS, PFBS, PFHxS, 6:2 FtS, PFHxA, PFNA, PFDA, FOSA	10 ⁻¹ - 10 ¹	Domestic, industrial, commercial
Plumlee, et al. ¹⁶	4 WWTPs (California)	PFOA, PFOS, PFHxS, PFDS, PFHxA, PFHpA, PFNA, PFDA, 6:2 FtS, FOSA, N-EtFOSAA	NA	Domestic, industrial, commercial
Loganathan, et al. ¹⁵	2 WWTPs (Georgia, Kentucky)	PFOA, PFOS, PFHxS, PFNA, PFOSA, PFDA, PFUnA, PFDoDA	$10^{-1} - 10^{2}$	Domestic, commercial
Xiao, et al. ²⁹	37 WWTPs (Minnesota)	PFOA, PFOS, PFHxA, PFHpA, PFNA	$10^0 - 10^2$	Domestic, industrial, commercial
Moody and Field 30	2 Air Force bases (Nevada, Florida)	PFHxA, PFHpA, PFOA, PFDoA	10 ¹ – 10 ³	Industrial
Nickerson, et al. ³¹	Military installation	PFCAs, PFSAs, Fluorotelomer, Fluorotelomer-derived sulfonamide	$10^1 - 10^5$	Industrial

Table S5. Source water and PFAS influent concentrations in WWTPs in other countries.

			Source	
Study	Country	Туре	Specification	PFAS Concentration Range (ng/L)
Chen, et al. ³² Lin, et al. ³³ Guo, et al. ³⁴ Yu, et al. ³⁵	China Taiwan South Korea Singapore	Domestic	Food packaging products, indoor air and dust, and home and workplace products	$10^1 - 10^2$
Wang, et al. ³⁶ Chirikona, et al. 37 Eriksson, et al. ³⁸	China Kenya Sweden	Commercial	Chrome plating, hospital	$10^2 - 10^3$
Bräunig, et al. ³⁹ Høisæter, et al. ⁴⁰	Australia Norway	Industrial	Aqueous film forming foam	>10 ³

Study	WWTP No	Treatment	PFOA	PFNA	PFHx A	PFHnA	PFDA	FOSA	N- EtFOSAA	PFUnA	PFDoDA	8:2 FTUCA	PFOS	PFBS	PFHxS	PFDS	6:2 FtS	Effluent $\sum PFOA$ + PFOS (ng/L)
Boulanger,	1	PS + AS + Cl	400%	NA	NA	NA	NA	NA	-30%	NA	NA	NA	-90%	NA	NA	NA	NA	48
ct al.		CI																
Sinclair and	2	PS + AS + Cl	100%	200%	NA	NA	100%	NA	NA	~0	NA	100%	100%	NA	~0	NA	NA	270
Kannan 12	3	PS + AS + Cl	100%	~0	NA	NA	NA	NA	NA	NA	NA	NA	~ 0	NA	~0	NA	NA	141
	4	PS + AS	~0	~0	-100%	-100%	NA	100%	NA	NA	NA	NA	-50%	-100%	-50%	NA	-50%	14
	5		50%	50%	1000% b	0	200%	NA	NA	NA	NA	NA	50%	0	50%	100%	1000% b	159
	5	F5 + A5	50%	-50%	+1000%	~0	20070	NA	NA	NA	NA	NA	-50%	~0	-30%	-100%	+1000%	158
	6	PS + AS	~0	~0	~0	200%	~0	+1000% b	NA	NA	NA	NA	-50%	~0	~0	-100%	100%	113
	7	PS + AS	~0	~0	100%	~0	300%	200%	NA	NA	NA	NA	~0	~0	~0	~0	-75%	121
Schultz, et	8	PS + AS	200%	~0	~0	400%	~0	100%	NA	NA	NA	NA	-50%	~0	-50%	~0	-50%	20
al. 13	9	PS + AS	100%	~0	~0	~0	+1500% b	+1000% b	NA	NA	NA	NA	~0	400%	~0	~0	+3000% ^b	71
	10	PS + AS +	300%	~0	-67%	200%	~0	~0	NA	NA	NA	NA	~0	~0	-100%	-100%	~0	19
	11	PS + AS + MF	50%	~0	~0	100%	~0	~0	NA	NA	NA	NA	-50%	~0	~0	-100%	~0	19
	12	PS + AS	~0	~0	~0	-100%	~0	400%	NA	NA	NA	NA	~0	300%	~0	~0	50%	36
	13	PS + AS	33%	-90%	~0	~0	~0	~0	NA	NA	NA	NA	~0	-100%	-50%	~0	-100%	66
Loganathan,	14	PS + AS + Cl	~0	~0	NA	NA	100%	100%	NA	~0	~0	NA	~0	NA	50%	NA	NA	328
et al. ¹⁵	15	PS + AS + Cl	150%	100%	NA	NA	500%	50%	NA	~0	~0	NA	~0	NA	50%	NA	NA	62
Xiao, et al. 29	16 (37 WWTPs Included)	PS + AS + UV/Cl	300%	50%	300%	200%	NA	NA	NA	NA	NA	NA	200%	NA	NA	NA	NA	NA
	17	NΔ	N۵	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	N۵	NΔ	NΔ	NΔ	NΔ	NΔ	65
Elmoznino, et al. ²⁴	18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	68

Table S6. PFAS concentration changes after treatment in WWTPs in the United States.

| 19 | NA | 57 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 20 | NA | 45 |
|
21 | NA | 30 |
|
22 | NA | 30 |
| 23 | NA | 43 |
| 24 | NA | 73 |
| 25 | NA | 47 |
| 26 | NA | 38 |
| 27 | NA | 76 |
| 28 | NA | 57 |

a PS = primary sedimentation; AS = activated sludge; Cl = chlorination; MF = membrane filtration; UV = ultraviolet radiation. b Data were deemed statistically outliers.

Surface Water																	
			Sample														
Study	State	Upstream ^a	Site	PFBA	PFBS	PFPeA	PFHxA	PFHxS	GenX	PFHpA	PFOS	PFOA	FOSA	PFNA	PFDA	PFUdA	PFDoA
		IP	1	10	3	18	25	2	NA	11	3	11	1	7	1	NA	1
Goodrow et al. ²⁶	New	WWTP	2	3	3	6	6	2	NA	5	2	19	1	2	1	NA	1
Coodiow, et ul.	Jersey	FTS	4	3	4	6	13	46	NA	5	71	14	1	1	1	NA	1
		Others	4	7	3	11	11	3	NA	8	6	9	1	4	1	NA	1
Schwichtenberg, et al. ²⁷	Michigan	Others	8	NA	NA	NA	6	25	NA	NA	21	9	NA	0	0	0	NA
D. 1. 28		FTS	10	3	18	52	81	11	NA	12	13	27	NA	0	0	1	0
Bai and Son ²⁸	Nevada	Others	8	0	5	6	18	6	NA	2	2	7	NA	0	0	0	0
Boulanger, et al. ¹⁰	_b	Others	2	NA	NA	NA	NA	NA	NA	NA	43	40	1	NA	NA	NA	NA
Hansen, et al. ⁶	Tennessee	IP	1	NA	NA	NA	NA	NA	NA	NA	69	189	NA	NA	NA	NA	NA
Kannan, et al. ⁸	Michigan	Others	2	NA	NA	NA	NA	NA	NA	NA	3	9	10			NA	NA
Lindstrom, et al. ¹⁹	Alabama ^c	IP	51	230	48	530	799	79	NA	1328	39	1049	NA	54	196	NA	NA
Nakayama et al ¹⁴	North	IP	7	NA	3	NA	13	7	NA	59	54	168	NA	115	70	21	2
Tukuyunia, et ul.	Carolina	FTS	4	NA	1	NA	9	10	NA	92	65	48	NA	36	15	7	1
Post, et al. ¹⁷	New Jersey	Others	12	NA	NA	NA	NA	NA	NA	NA	NA	18	NA	NA	NA	NA	NA
Simcik and		WWTP	4	NA	NA	NA	NA	NA	NA	3	20	6	NA	1	0	NA	NA
Dorweiler ⁹	Minnesota	Others	6	NA	NA	NA	NA	NA	NA	3	2	1	NA	0	0	NA	NA
Sun, et al. ²²	North	IP	1	22	10	36	10	10	631	10	25	10	NA	10	25	NA	NA
Sun, et ui.	Carolina	Others	2	23	10	41	45	12	10	39	35	28	NA	10	25	NA	NA

Table S7. Concentrations of PFASs (ng/L) in surface water and ground water in the United States.

Cin -1-in -4 -1 11	Nam Vaula	IP	1	NA	NA	NA	NA	7	NA	NA	756	49	NA	NA	NA	NA	NA
Sinciair, et al.	New York	Others	9	NA	NA	NA	NA	1	NA	NA	3	20	NA	NA	NA	NA	NA
Plumlee, et al. ¹⁶	California	Others	6	NA	NA	NA	NA	7	NA	8	29	17	3	NA	13	NA	NA
	Georgia	WWTP	1	NA	NA	NA	54	10	NA	NA	18	70	NA	13	8	1	1
Quiñones and Snyder ¹⁸	Arizona and Nevada	Others	6	NA	NA	NA	1	0	NA	NA	1	3	NA	1	0	0	0
							Ground V	Water									
Plumlee, et al. ¹⁶	California	Others	3	NA	NA	NA	NA	7	NA	1	70	11	1	NA	3	NA	NA
Post, et al. ¹⁷	New Jersey	Others	12	NA	NA	NA	NA	NA	NA	NA	NA	12	NA	NA	NA	NA	NA
Quiñones and Snyder ¹⁸	Arizona and Nevada	WWTP	5	NA	NA	NA	35	6	NA	NA	11	74	NA	11	7	1	1

^a IP = Industrial Plant; FTS = Firefighting Training Site.
 ^b Samples were taken in Lake Erie and Lake Ontario.
 ^c Data were deemed statistically outliers.

							K _d				
Study	Country	WWTP No.	PFHxA	PFNA	PFDA	PFUnA	PFDoDA	PFOA	FOSA	PFOS	PFHxS
			NA	0.4	10.3	11.8	14.4	1.4	6.8	6.8	0.4
		1	NA	1.3	22	15.4	20	0.1	13.8	13.8	0.3
			NA	1.3	10.9	5	5	0.2	3.9	3.9	0.5
Loganathan, et al. ¹⁵	USA		NA	0.1	0	1	0.1	0	0	0	1
		2	NA	0.2	0.6	5	5	0.3	3.8	3.8	0.3
		2	NA	1	0.3	1	0.1	0.4	0.6	0.6	1
			NA	0.2	0	1	0.1	0.1	0	0	1
		3	ΝA	ΝA	3.4	15.0	ΝA	13	ΝA	4.0	2.6
Sinclair and Kannan ¹²	USA	3	NA	NA	3.4 NA	1J.9 NA	NA	1.5	NA NA	4.9	2.0
		4	NA	INA	INA	NA	INA	0.9	INA	4.7	3.2
			NA	NA	NA	NA	NA	1.5	NA	3.1	NA
		5	NA	NA	NA	NA	NA	1.1	NA	4.2	NA
			NA	NA	NA	NA	NA	1.3	NA	3.2	NA
Yu, et al. ³³	USA		NA	NA	NA	NA	NA	0.9	NA	1.6	NA
		6	NA	NA	NA	NA	NA	0.6	NA	4.7	NA
			NA	NA	NA	NA	NA	0.2	NA	4.5	NA
		7	NTA	0	14.5	NT A	0.1	0.2	NT A	2.5	0
		/	NA	0	14.5	NA	0.1	0.3	NA	3.5	0
		8	NA	0	5.9	NA	0.9	0.6	NA	2.8	0.3
		9	NA	0	0.9	NA	0	0	NA	2.2	0
Coggan, et al. 41	Australia	10	NA	0.7	4.7	NA	0.1	0.2	NA	2.9	0.2
		11	NA	0	0.2	NA	0	0	NA	0.1	0.1
		12	NA	0	0	NA	0.1	0.1	NA	0.3	0.2
		13	NA	0	1.4	NA	0.1	0.1	NA	0.6	0
		14	NA	0	0.9	NA	0.1	0.2	NA	0.7	0.1

		15	0	1.2	3.8	NA	NA	0.1	NA	1.7	NA
Pan, et al. 42	China	16	0.2	2.4	16.9	NA	NA	0.4	NA	5.3	NA
		17	0.1	1.4	8.6	NA	NA	0.2	NA	5.6	NA
		18	NA	0.8	5	NA	NA	0.4	2.9	3.1	7.1
		19	NA	1.8	5	NA	NA	0.3	2.2	1.5	5
Possi et al 43	Donmark	20	NA	1	4.7	NA	NA	0.7	10	3	6.3
Bossi, et al. ⁴³	Denmark	21	NA	0.8	3.6	NA	NA	0.3	10	2.4	8.3
		22	NA	1.4	5	NA	NA	0.3	1.8	2.8	3.6
		23	NA	2.5	5	NA	NA	0	10	0	0
Arvaniti et al. 44	Greece	24	3.3	0.7	0.4	0.3	0.2	0.2	0.8	0.5	0.8
Arvaniti, et al. 44	Greece	25	4.2	0	0	0.7	0	0.3	1.2	23.8	0.6
Campo, et al. ⁴⁵	Spain	26	2.3	0.3	0.5	0.1	1.4	0.1	0	3	0
	Spain	27	0.1	0.8	7.4	1.5	0	1.5	3.4	0.5	0

Study	Country	DWTP No.	Primary Treatment ^a	PFBS	PFPeA	PFHxS	PFHxA	PFBA	PFHpA	PFOS	PFOA	PFNA	PFDA	Effluent $\sum PFOA + PFOS$ (ng/L)
·		1	MF+RO+UV-AOP+Cl ₂	-97%	-82%	-95%	-97%	-83%	-85%	-98%	-50%	-87%	-67%	<5.25
		2	AEX+MF+ Cl ₂	-21%	11%	14%	24%	12%	17%	30%	NA	4%	NA	111
		3	UV-AOP+GAC	-98%	-77%	-99%	-95%	-38%	-94%	-97%	-79%	-77%	NA	<5.25
		4	$GAC+Cl_2$	-56%	NA	-17%	-25%	NA	NA	-42%	-11%	NA	NA	<5.25
		5	MF+UF+RO+UV-AOP	-94%	-98%	-91%	-99%	-95%	-95%	-96%	-98%	-95%	-99%	<5.25
		6	ClO ₂	25%	15%	NA	19%	NA	16%	53%	14%	23%	NA	35.6
Appleman, et al.		7	$O_3 + Cl_2 + NH2Cl$	14%	3%	-4%	7%	NA	3%	-24%	9%	-10%	NA	15.2
21	USA	8	$UV+Cl_2$	-11%	-8%	-33%	5%	8%	-4%	-44%	-7%	-17%	NA	29
		9	$AEX + Cl_2$	-86%	7%	-98%	14%	NA	-19%	-94%	-83%	-67%	NA	21.25
		10	Cl ₂ +MnO4	-4%	NA	-6%	5%	NA	-7%	3%	NA	17%	9%	41.4
		11	$ClO_2 + Cl_2$	NA	8%	-8%	NA	-17%	-8%	6%	-6%	8%	NA	17.51
		12	$MnO4+O_3+Cl_2$	20%	6%	3%	5%	NA	-7%	2%	8%	24%	17%	19.6
		13	GAC+ Cl ₂	-6%	26%	8%	25%	12%	-5%	104%	29%	29%	78%	36.4
		14	Cl_2	7%	-2%	-5%	-7%	4%	3%	5%	16%	4%	7%	59.2
	USA	15	O ₃ +NH2Cl	7%	4%	-4%	8%	3%	-7%	-13%	-8%	-9%	-12%	14.2
		16	$GAC + Cl_2$	-90%	-54%	NA	-76%	-19%	-93%	NA	-96%	NA	NA	1.1
P oope at al. 25		17	$GAC + Cl_2 + UV$	-4%	-2%	-30%	4%	4%	-19%	-55%	-20%	-33%	-33%	4
Boone, et al. ²⁵		18	Cl ₂ +NH2Cl	-5%	-6%	-3%	NA	1%	-4%	9%	NA	1%	3%	11.6
		19	Cl ₂	NA	NA	NA	25%	NA	NA	NA	NA	NA	NA	0
		20	NH2Cl	7%	10%	-14%	-2%	-1%	-2%	-11%	-10%	-7%	-26%	10.3

Table S9.	PFAS	concentration	changes	in D	WTPs	in	both	the	United	States	and	other	countrie	es.

	21	$O_3 + GAC + Cl_2$	581% ^b	NA	-57%	12%	NA	-8%	-65%	NA	NA	NA	0.2
	22	$Cl2 + GAC + Cl_2$	-2%	-8%	10%	NA	3%	-3%	13%	10%	7%	6%	32.2
	23	Cl_2	-3%	1%	13%	9%	NA	10%	9%	9%	15%	NA	1.4
	24	$ClO_2 + GAC + Cl_2$	-1%	58%	-13%	3%	1%	-9%	3%	NA	2%	NA	0.4
_	25	Cl ₂	-5%	17%	-12%	NA	-2%	3%	NA	NA	-14%	NA	0
	26	GAC+NH2Cl	55%	23%	16%	12%	9%	-4%	4%	2%	-1%	NA	2.7
	27	Cl_2	-3%	-3%	5%	5%	4%	-8%	2%	-4%	7%	5%	8
	28	$O_3 + GAC + NH2Cl$	-35%	-32%	-56%	-31%	-18%	-49%	-67%	-48%	-59%	-70%	6.4
	29	PAC + NH2Cl	4%	-5%	-4%	-1%	5%	-12%	-7%	8%	NA	NA	2
	30	$O_3 + GAC + Cl_2$	25%	46%	NA	88%	4%	15%	NA	NA	-20%	NA	0
	31	Cl_2	1%	NA	6%	9%	1%	NA	-1%	-6%	6%	2%	21.7
	32	$O_3 + Cl_2 + GAC + UV$	30%	3%	7%	10%	7%	-4%	-24%	-7%	-7%	-21%	140.9
	33	$ClO_2 + UV + Cl_2$	16%	-9%	-12%	18%	-3%	-3%	-3%	76%	34%	75%	36.3
	34	PAC + GAC + NH2Cl	-8%	NA	NA	-4%	4%	-10%	37%	-11%	1%	NA	7.6
	35	O ₃ +GAC+NH2Cl	11%	-3%	-6%	-2%	1%	-1%	-46%	-7%	-27%	-74%	3.9
	36	$PAC+Cl_2$	5%	2%	5%	6%	8%	2%	22%	14%	15%	40%	6.6
	37	PAC+NH2Cl+UV	-35%	-17%	-44%	-20%	57%	-34%	-47%	-42%	-46%	NA	1.1
	38	PAC+O3+NH2Cl	8%	-3%	1%	3%	13%	-2%	3%	7%	-2%	-5%	2.6
	39	PAC+ Cl ₂	1%	-25%	NA	6%	12%	-16%	NA	NA	-1%	NA	0
	40	Clm	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
	41	UV+ Cl ₂	NA	NA	5%	-7%	NA	NA	-6%	0%	0%	NA	20.4
	42	$O_3 + Cl_2$	NA	NA	NA	0%	NA	NA	0%	-100%	NA	NA	1.4
USA	43	PAC+Clm	NA	NA	-44%	0%	NA	NA	12%	-100%	NA	NA	1.9
	44	Cl ₂ +UV	NA	NA	0%	-21%	NA	NA	0%	-3%	-3%	0%	52
	45	MF/RO+UV/H2O2	NA	NA	-100%	-100%	NA	NA	-100%	-100%	-100%	-100%	0
	46	Cl_2	NA	NA	20%	-86%	NA	NA	97%	-28%	-36%	-29%	75

		47	Cl ₂	NA	-15%	NA	-16%	0%	-24%	0%	0%	NA	NA	8
D =: t===================================	E	48	GAC+ Cl ₂	NA	-2%	NA	23%	-11%	6%	0%	8%	NA	NA	8.3
Boneux, et al.	France	40	$O_3 + GAC$	NA	358%	NA	356%	67%	208%	0%	-11%	NA	NA	9
		49	$O_3 + MF + NF$	0%	25%	0%	15%	0%	-5%	0%	-19%	0%	NA	8
Don at al 4^2	China	50	$O_3 + GAC$	123%	6%	NA	-4%	0%	-5%	NA	8%	-17%	NA	2.5
Pall, et al.	China	51	GAC+PAC	-82%	-16%	NA	-63%	272% ^b	-88%	NA	-94%	-100%	NA	0.7
		52	$UV + Cl_2$	0%	0%	0%	0%	0%	0%	0%	24%	3%	14%	NA
		53	$UV + Cl_2$	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	NA
		54	$GAC+UV+Cl_2$	0%	0%	15%	0%	0%	0%	51%	0%	32%	31%	NA
Tröger, et al. ⁴⁷	Sweden	55	UV	0%	0%	0%	0%	0%	0%	0%	2%	56%	78%	NA
		56	$UV + ClO_2$	0%	0%	27%	0%	0%	0%	52%	22%	17%	0%	NA
		57	$GAC+UV+Cl_2$	0%	0%	2%	0%	0%	0%	16%	0%	8%	0%	NA
		58	$GAC + UF + ClO_2 \\$	0%	0%	26%	0%	0%	0%	59%	56%	42%	30%	NA
		59	$Cl_2 + PAC + O_3 + Cl_2$	-32%	-38%	2%	3%	NA	-7%	-67%	-22%	-41%	-91%	
	a 1	60	$Cl_2 \!\!+ O_3 \!+ GAC + O_3 \!+ Cl_2$	-2%	-26%	-17%	9%	NA	10%	-12%	6%	-1%	-3%	
Kim, et al. 48	South Korea	61	$Cl_2 \!\!+ O_3 \!+ GAC + O_3 \!+ Cl_2$	-25%	-16%	-34%	-4%	NA	-13%	-40%	-21%	-25%	-22%	12.8
		62	$Cl_{2} + O_{3} + GAC + Cl_{2}$	7%	-8%	-39%	-1%	NA	-1%	-84%	-23%	-49%	-64%	
		63	$Cl_{2} + O_{3} + GAC + Cl_{2}$	-19%	-22%	-76%	-10%	NA	-29%	-87%	-59%	-68%	-86%	
Qu, et al. 49	China	64	Cl ₂ + Cl ₂	5%	3%	-2%	36%	4%	16%	3%	6%	-4%	NA	10.4
Qu, et al. ⁴⁹ China		China 64	GAC	-81%	-100%	-100%	-100%	-100%	-100%	-73%	-100%	-100%	NA	
Takagi, et al. ⁵⁰	Japan	65	$O_3 + GAC + Cl_2$	NA	NA	NA	NA	NA	NA	62%	110%	NA	NA	38.5
Takagı, et al. ⁵⁰ J		66	$O_3 + GAC + Cl_2$	NA	NA	NA	NA	NA	NA	-2%	12%	NA	NA	35.5

		67	$O_3 + GAC + Cl_2$	NA	NA	NA	NA	NA	NA	1%	63%	NA	NA	22.8
		68	$O_3 + GAC + Cl_2 \\$	NA	NA	NA	NA	NA	NA	9%	29%	NA	NA	35.6
		69	$GAC + Cl_2$	NA	NA	NA	NA	NA	NA	-88%	-81%	NA	NA	8.4
FI (151	с ·	70	$O_3 + GAC$	NA	NA	NA	NA	NA	NA	-72%	-38%	NA	NA	46
Flores, et al.	Spain	70	UF + RO	NA	NA	NA	NA	NA	NA	-85%	-57%	NA	NA	16
Belkouteb, et al.	Sweden	71	$GAC + Cl_2$	NA	NA	-83%	-65%	NA	NA	-100%	-85%	NA	NA	0.4

^a MF = Microfiltration; RO = Reverse Osmosis; UV-AOP = UV Photolysis with Advanced Oxidation (Hydrogen Peroxide); AEX = Anion Exchange Resins; Cl₂= Hypocholorous/Hypocholorite; GAC = Granular Activated Carbon; UF = Ultrafiltration; ClO₂ = Chlorine Dioxide; O₃ = Ozone; PAC = Powdered Activated Carbons; Clm = Chloramination; NF = Nanofiltration. ^b Data were deemed statistically outliers.

Table S10	PFAS-treatment	technologies.
-----------	----------------	---------------

_	Technology	Application Scale	Advantages	Disadvantage
	Activated carbon ⁵³⁻⁵⁵	Laboratory Pilot Full	Efficient removal of long-chain PFASs High capacity Low cost Easy O&M	Low selectivity Competition of co-contaminants Disposal issue
Separation	Anion exchange resin ⁵⁶⁻⁵⁸	Laboratory Pilot	High capacity High selectivity Easy O&M	Competition of co-contaminants Harsh conditions for regeneration High cost Only effective for anionic PFASs
	Foam fractionation 59, 60	Laboratory	High efficiency Low cost Easy O&M	Post treatment needed More research needed
	Advanced oxidation process ^{61,} 62	Laboratory	High efficiency	Fluoride byproducts Not effective for some PFASs High cost
Destruction	Thermal destruction ⁶³⁻⁶⁶	Laboratory Pilot	Effective degradation	Toxic gas High cost
20000000	Plasma ^{67, 68}	Laboratory Pilot	Effective degradation	Special equipment Demanding conditions High cost
	Electrochemical oxidation 69, 70	Laboratory Pilot	High efficiency Low cost	Generation of toxic byproducts Addition of electrolyte
	Advanced reduction 71-73	Laboratory	High efficiency	High Cost Partial degradation products Addition of reductants

Table S11. PFAS	concentration	changes afte	r wastewater	treatment in	other countries.
		0			

Study	Country	WWTP No.	Treatment Type	PFBA	PFPeA	PFBS	PFHxA	PFHpA	PFHxS	PFOA	PFNA	PFOS	PFDA	PFOSA	6:2 FTS	PFDS
Pan, et al. 42	China	1	PS+ANA+AS	15%	32%	-5%	-13%	23%	-20%	2%	-34%	99%	88%	NA	NA	NA
		2	PS+ANA+MF	-13%	-23%	9%	-33%	-4%	NA	8%	-78%	-25%	-58%	NA	NA	NA
		3	PS+Unitank	-27%	-7%	1%	14%	12%	NA	29%	-71%	-50%	-20%	NA	NA	NA
Campo, et al. 45	Spain	4 ^c	PS+AS+DIS	-13%	30%	87%	718%	-38%	-10%	-24%	11%	-9%	1800% b	0%	NA	NA
Coggan, et al. ⁴¹ Dalahmeh, et al. ⁷⁴	Australia	5 ^d	PS+AS+DIS	171%	83%	-20%	149%	101%	58%	214%	66%	-6%	105%	NA	-16%	NA
	Uganda	6	PS+AS	NA	NA	NA	NA	NA	72%	30%	67%	156%	NA	NA	NA	NA
Huset, et al. ⁷⁵	Switzerland	7	PS+AS+DN	NA	NA	3%	0%	-96%	500%	471%	0%	45%	0%	0%	100%	-64%
		8	PS+AS+DN	NA	NA	-31%	93%	-6%	-77%	233%	0%	-11%	47%	0%	-71%	0%
		9	PS+AS+DN	NA	NA	24%	686% ^b	273%	18%	0%	-92%	-33%	0%	-50%	-86%	0%
		10	PS+AS+DN	NA	NA	7%	0%	117%	63%	8%	0%	-11%	0%	65%	-50%	-88%
		11	PS+AS+DN	NA	NA	-15%	0%	-18%	13%	35%	0%	21%	0%	0%	-32%	-48%
		12	PS+AS+DN	NA	NA	267%	0%	-92%	80%	200%	0%	-30%	0%	0%	-88%	-93%
		13	PS+AS+N	NA	NA	- 100%	1038% ь	-75%	19%	44%	0%	23%	0%	0%	-58%	-99%
Bossi, et al. ⁴³	Denmark	14	NA NA NA NA NA	NA	NA	NA	NA	NA	-96%	-34%	-52%	-10%	0%	250%	NA	NA
		15		NA	NA	NA	NA	NA	-93%	660% ^b	-52%	433%	0%	350%	NA	NA
		16		NA	NA	NA	NA	NA	-68%	-50%	62%	23%	6%	0%	NA	NA
		17		NA	NA	NA	NA	NA	-84%	39%	-13%	11%	38%	0%	NA	NA
		18		NA	NA	NA	NA	-82%	171%	-46%	191%	0%	450%	NA	NA	
		19		NA	NA	NA	NA	NA	-100%	-100%	0%	- 100%	0%	-80%	NA	NA
Arvaniti, et al. 44	Greece	20	PS+AS+ANA	NA	185%	0%	-29%	141%	-52%	28%	92%	-7%	210%	-29%	NA	228%
		21	PS+AS+Cl	NA	125%	0%	14%	17%	-94%	71%	0%	-98%	-100%	-82%	NA	-85%

^a ANA = anaerobic treatment; DIS = disinfection process; DN = denitrifying process; N = nitrifying process.
^b Data were deemed statistically outliers.
^c 16 WWTPs included.
^d 19 WWTPs included.

REFERENCES

1. USEPA, Method 533: determination of per- and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry. In USEPA, Ed. 2019.

2. USEPA, Method 537. 1: determination of selected per- and polyfluorinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry(Lc/ms/ms). In USEPA, Ed. 2020.

3. USEPA, SW-846 Test Method 8327: Per-and Polyfluoroalkyl Substances (PFAS) by Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). In 2021.

4. USEPA, Draft Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. In USEPA, Ed. 2021.

5. USDoD, Department of Defense (DoD) Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. In USDoD, Ed. 2019.

6. Hansen, K. J.; Johnson, H. O.; Eldridge, J. S.; Butenhoff, J. L.; Dick, L. A., Quantitative Characterization of Trace Levels of PFOS and PFOA in the Tennessee River. *Environmental Science & Technology* **2002**, *36*, (8), 1681-1685.

7. Boulanger, B.; Vargo, J.; Schnoor, J. L.; Hornbuckle, K. C., Detection of Perfluorooctane Surfactants in Great Lakes Water. *Environmental Science & Technology* **2004**, *38*, (15), 4064-4070.

8. Kannan, K.; Tao, L.; Sinclair, E.; Pastva, S. D.; Jude, D. J.; Giesy, J. P., Perfluorinated Compounds in Aquatic Organisms at Various Trophic Levels in a Great Lakes Food Chain. *Archives of Environmental Contamination and Toxicology* **2005**, *48*, (4), 559-566.

9. Simcik, M. F.; Dorweiler, K. J., Ratio of Perfluorochemical Concentrations as a Tracer of Atmospheric Deposition to Surface Waters. *Environmental Science & Technology* **2005**, *39*, (22), 8678-8683.

10. Boulanger, B.; Vargo, J. D.; Schnoor, J. L.; Hornbuckle, K. C., Evaluation of Perfluorooctane Surfactants in a Wastewater Treatment System and in a Commercial Surface Protection Product. *Environmental Science & Technology* **2005**, *39*, (15), 5524-5530.

11. Sinclair, E.; Mayack, D. T.; Roblee, K.; Yamashita, N.; Kannan, K., Occurrence of Perfluoroalkyl Surfactants in Water, Fish, and Birds from New York State. *Archives of Environmental Contamination and Toxicology* **2006**, *50*, (3), 398-410.

 Sinclair, E.; Kannan, K., Mass Loading and Fate of Perfluoroalkyl Surfactants in Wastewater Treatment Plants. *Environmental Science & Technology* 2006, *40*, (5), 1408-1414.
 Schultz, M. M.; Barofsky, D. F.; Field, J. A., Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection Liquid Chromatography Tandem Mass SpectrometryCharacterization of Municipal Wastewaters. *Environmental Science & Technology* 2006, *40*, (1), 289-295.

14. Nakayama, S.; Strynar, M. J.; Helfant, L.; Egeghy, P.; Ye, X.; Lindstrom, A. B., Perfluorinated Compounds in the Cape Fear Drainage Basin in North Carolina. *Environmental Science & Technology* **2007**, *41*, (15), 5271-5276.

15. Loganathan, B. G.; Sajwan, K. S.; Sinclair, E.; Senthil Kumar, K.; Kannan, K., Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. *Water Research* **2007**, *41*, (20), 4611-4620.

16. Plumlee, M. H.; Larabee, J.; Reinhard, M., Perfluorochemicals in water reuse. *Chemosphere* **2008**, *72*, (10), 1541-1547.

17. Post, G. B.; Cooper, K. R.; Louis, J. B.; Lippincott, R. L., Response to Comment on "Occurrence and Potential Significance of Perfluorooctanoic Acid (PFOA) Detected in New Jersey Public Drinking Water Systems". *Environmental Science & Technology* **2009**, *43*, (22), 8699-8700. 18. Quiñones, O.; Snyder, S. A., Occurrence of Perfluoroalkyl Carboxylates and Sulfonates in Drinking Water Utilities and Related Waters from the United States. *Environmental Science & Technology* **2009**, *43*, (24), 9089-9095.

19. Lindstrom, A. B.; Strynar, M. J.; Delinsky, A. D.; Nakayama, S. F.; McMillan, L.; Libelo, E. L.; Neill, M.; Thomas, L., Application of WWTP Biosolids and Resulting Perfluorinated Compound Contamination of Surface and Well Water in Decatur, Alabama, USA. *Environmental Science & Technology* **2011**, *45*, (19), 8015-8021.

20. Furl, C. V.; Meredith, C. A.; Strynar, M. J.; Nakayama, S. F., Relative importance of wastewater treatment plants and non-point sources of perfluorinated compounds to Washington State rivers. *Science of the total environment* **2011**, *409*, (15), 2902-2907.

21. Appleman, T. D.; Higgins, C. P.; Quiñones, O.; Vanderford, B. J.; Kolstad, C.; Zeigler-Holady, J. C.; Dickenson, E. R. V., Treatment of poly- and perfluoroalkyl substances in U.S. fullscale water treatment systems. *Water Research* **2014**, *51*, 246-255.

22. Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.; Smith, C.; Knappe, D. R. U., Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina. *Environmental Science & Technology Letters* **2016**, *3*, (12), 415-419.

23. Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Batt, A. L.; Benson, R.; Boone, J. S.; Conerly, O.; Donohue, M. J.; King, D. N.; Kostich, M. S.; Mash, H. E.; Pfaller, S. L.; Schenck, K. M.; Simmons, J. E.; Varughese, E. A.; Vesper, S. J.; Villegas, E. N.; Wilson, V. S., Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. *Science of The Total Environment* **2017**, *581-582*, 909-922.

24. Elmoznino, J.; Vlahos, P.; Whitney, M., Occurrence and partitioning behavior of perfluoroalkyl acids in wastewater effluent discharging into the Long Island Sound. *Environmental pollution* **2018**, *243*, 453-461.

25. Boone, J. S.; Vigo, C.; Boone, T.; Byrne, C.; Ferrario, J.; Benson, R.; Donohue, J.; Simmons, J. E.; Kolpin, D. W.; Furlong, E. T.; Glassmeyer, S. T., Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States. *Science of The Total Environment* **2019**, *653*, 359-369.

26. Goodrow, S. M.; Ruppel, B.; Lippincott, R. L.; Post, G. B.; Procopio, N. A., Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA. *Science of The Total Environment* **2020**, *729*, 138839.

27. Schwichtenberg, T.; Bogdan, D.; Carignan, C. C.; Reardon, P.; Rewerts, J.; Wanzek, T.; Field, J. A., PFAS and Dissolved Organic Carbon Enrichment in Surface Water Foams on a Northern U.S. Freshwater Lake. *Environmental Science & Technology* **2020**, *54*, (22), 14455-14464.

28. Bai, X.; Son, Y., Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. *Science of The Total Environment* **2021**, *751*, 141622.

29. Xiao, F.; Hanson, R. A.; Golovko, S. A.; Golovko, M. Y.; Arnold, W. A., PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. *Environmental Science & Technology Letters* **2018**, *5*, (6), 382-388.

30. Moody, C. A.; Field, J. A., Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity. *Environmental Science & Technology* **1999**, *33*, (16), 2800-2806.

31. Nickerson, A.; Rodowa, A. E.; Adamson, D. T.; Field, J. A.; Kulkarni, P. R.; Kornuc, J. J.; Higgins, C. P., Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. *Environmental Science & Technology* **2020**, *55*, (1), 313-323.

32. Chen, H.; Zhang, C.; Han, J.; Yu, Y.; Zhang, P., PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments. *Environmental Pollution* **2012**, *170*, 26-31.

33. Lin, A. Y.-C.; Panchangam, S. C.; Ciou, P.-S., High levels of perfluorochemicals in Taiwan's wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. *Chemosphere* **2010**, *80*, (10), 1167-1174.

34. Guo, R.; Sim, W.-J.; Lee, E.-S.; Lee, J.-H.; Oh, J.-E., Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. *Water Research* **2010**, *44*, (11), 3476-3486.

35. Yu, J.; Hu, J.; Tanaka, S.; Fujii, S., Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. *Water Research* **2009**, *43*, (9), 2399-2408.

36. Wang, S.; Huang, J.; Yang, Y.; Hui, Y.; Ge, Y.; Larssen, T.; Yu, G.; Deng, S.; Wang, B.; Harman, C., First Report of a Chinese PFOS Alternative Overlooked for 30 Years: Its Toxicity, Persistence, and Presence in the Environment. *Environmental Science & Technology* **2013**, *47*, (18), 10163-10170.

37. Chirikona, F.; Filipovic, M.; Ooko, S.; Orata, F., Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya. *Environmental Monitoring and Assessment* **2015**, *187*, (5).

38. Eriksson, U.; Haglund, P.; Kärrman, A., Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs). *Journal of Environmental Sciences* **2017**, *61*, 80-90.

39. Bräunig, J.; Baduel, C.; Heffernan, A.; Rotander, A.; Donaldson, E.; Mueller, J. F., Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. *Science of The Total Environment* **2017**, *596-597*, 360-368.

40. Høisæter, Å.; Pfaff, A.; Breedveld, G. D., Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. *Journal of Contaminant Hydrology* **2019**, *222*, 112-122.

41. Coggan, T. L.; Moodie, D.; Kolobaric, A.; Szabo, D.; Shimeta, J.; Crosbie, N. D.; Lee, E.; Fernandes, M.; Clarke, B. O., An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). *Heliyon* **2019**, *5*, (8), e02316.

42. Pan, C.-G.; Liu, Y.-S.; Ying, G.-G., Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk. *Water Research* **2016**, *106*, 562-570.

43. Bossi, R.; Strand, J.; Sortkjær, O.; Larsen, M. M., Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments. *Environment International* **2008**, *34*, (4), 443-450.

44. Arvaniti, O. S.; Ventouri, E. I.; Stasinakis, A. S.; Thomaidis, N. S., Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid–water distribution coefficients. *Journal of Hazardous Materials* **2012**, *239-240*, 24-31.

45. Campo, J.; Masiá, A.; Picó, Y.; Farré, M.; Barceló, D., Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants. *Science of The Total Environment* **2014**, *472*, 912-922.

46. Boiteux, V.; Dauchy, X.; Bach, C.; Colin, A.; Hemard, J.; Sagres, V.; Rosin, C.; Munoz, J.-F., Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source. *Science of The Total Environment* **2017**, *583*, 393-400.

47. Tröger, R.; Köhler, S. J.; Franke, V.; Bergstedt, O.; Wiberg, K., A case study of organic micropollutants in a major Swedish water source – Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. *Science of The Total Environment* **2020**, *706*, 135680.

48. Kim, K. Y.; Ekpe, O. D.; Lee, H.-J.; Oh, J.-E., Perfluoroalkyl substances and pharmaceuticals removal in full-scale drinking water treatment plants. *Journal of Hazardous Materials* **2020**, *400*, 123235.

49. Qu, Y.; Jiang, X.; Cagnetta, G.; Liu, L.; Bao, Y.; Li, W.; Wang, Q.; Liang, C.; Huang, J.; Yang, H.; Yu, G., Poly- and perfluoroalkyl substances in a drinking water treatment plant in the Yangtze River Delta of China: Temporal trend, removal and human health risk. *Science of The Total Environment* **2019**, *696*, 133949.

50. Takagi, S.; Adachi, F.; Miyano, K.; Koizumi, Y.; Tanaka, H.; Watanabe, I.; Tanabe, S.; Kannan, K., Fate of Perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. *Water Research* **2011**, *45*, (13), 3925-3932.

51. Flores, C.; Ventura, F.; Martin-Alonso, J.; Caixach, J., Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. *Science of The Total Environment* **2013**, *461-462*, 618-626.

52. Belkouteb, N.; Franke, V.; McCleaf, P.; Köhler, S.; Ahrens, L., Removal of per- and polyfluoroalkyl substances (PFASs) in a full-scale drinking water treatment plant: Long-term performance of granular activated carbon (GAC) and influence of flow-rate. *Water Research* **2020**, *182*, 115913.

Xiao, X.; Ulrich, B. A.; Chen, B.; Higgins, C. P., Sorption of poly-and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. *Environmental science & technology* 2017, *51*, (11), 6342-6351.
Murray, C. C.; Vatankhah, H.; McDonough, C. A.; Nickerson, A.; Hedtke, T. T.; Cath, T. Y.;

Higgins, C. P.; Bellona, C. L., Removal of per-and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration. *Journal of hazardous materials* **2019**, *366*, 160-168.

55. Park, M.; Wu, S.; Lopez, I. J.; Chang, J. Y.; Karanfil, T.; Snyder, S. A., Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. *Water Research* **2020**, *170*, 115364.

56. Schaefer, C. E.; Nguyen, D.; Ho, P.; Im, J.; LeBlanc, A., Assessing rapid small-scale column tests for treatment of perfluoroalkyl acids by anion exchange resin. *Industrial & Engineering Chemistry Research* **2019**, *58*, (22), 9701-9706.

57. Woodard, S.; Berry, J.; Newman, B., Ion exchange resin for PFAS removal and pilot test comparison to GAC. *Remediation Journal* **2017**, *27*, (3), 19-27.

58. Zaggia, A.; Conte, L.; Falletti, L.; Fant, M.; Chiorboli, A., Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants. *Water research* **2016**, *91*, 137-146.

59. Lee, Y.-C.; Wang, P.-Y.; Lo, S.-L.; Huang, C., Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. *Separation and Purification Technology* **2017**, *173*, 280-285.

60. Robey, N. M.; da Silva, B. F.; Annable, M. D.; Townsend, T. G.; Bowden, J. A., Concentrating per-and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachate using foam separation. *Environmental Science & Technology* **2020**, *54*, (19), 12550-12559. 61. Anumol, T.; Dagnino, S.; Vandervort, D. R.; Snyder, S. A., Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes. *Chemosphere* **2016**, *144*, 1780-1787.

62. Krause, M. J.; Thoma, E.; Sahle-Damesessie, E.; Crone, B.; Whitehill, A.; Shields, E.; Gullett, B., Supercritical Water Oxidation as an Innovative Technology for PFAS Destruction. *Journal of Environmental Engineering* **2022**, *148*, (2), 05021006.

63. Watanabe, N.; Takata, M.; Takemine, S.; Yamamoto, K., Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere. *Environmental Science and Pollution Research* **2018**, *25*, (8), 7200-7205.

64. Wang, F.; Lu, X.; Li, X.-y.; Shih, K., Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. *Environmental science & technology* **2015**, *49*, (9), 5672-5680.

65. Wu, B.; Hao, S.; Choi, Y.; Higgins, C. P.; Deeb, R.; Strathmann, T. J., Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. *Environmental Science & Technology Letters* **2019**, *6*, (10), 630-636.

66. Hao, S.; Choi, Y.-J.; Wu, B.; Higgins, C. P.; Deeb, R.; Strathmann, T. J., Hydrothermal Alkaline Treatment for Destruction of Per-and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. *Environmental Science & Technology* **2021**, *55*, (5), 3283-3295.

67. Singh, R. K.; Fernando, S.; Baygi, S. F.; Multari, N.; Thagard, S. M.; Holsen, T. M., Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. *Environmental science & technology* **2019**, *53*, (5), 2731-2738.

68. Singh, R. K.; Multari, N.; Nau-Hix, C.; Anderson, R. H.; Richardson, S. D.; Holsen, T. M.; Mededovic Thagard, S., Rapid removal of poly-and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor. *Environmental science & technology* **2019**, *53*, (19), 11375-11382.

69. Wang, Y.; Pierce, R. D.; Shi, H.; Li, C.; Huang, Q., Electrochemical degradation of perfluoroalkyl acids by titanium suboxide anodes. *Environmental Science: Water Research & Technology* **2020**, *6*, (1), 144-152.

70. Shi, H.; Wang, Y.; Li, C.; Pierce, R.; Gao, S.; Huang, Q., Degradation of perfluorooctanesulfonate by reactive electrochemical membrane composed of magneli phase titanium suboxide. *Environmental science & technology* **2019**, *53*, (24), 14528-14537.

71. Bao, Y.; Huang, J.; Cagnetta, G.; Yu, G., Removal of F–53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction. *Water Research* **2019**, *163*, 114907.

72. Yazdanbakhsh, A.; Eslami, A.; Moussavi, G.; Rafiee, M.; Sheikhmohammadi, A., Photoassisted degradation of 2, 4, 6-trichlorophenol by an advanced reduction process based on sulfite anion radical: Degradation, dechlorination and mineralization. *Chemosphere* **2018**, *191*, 156-165.

73. Bentel, M. J.; Yu, Y.; Xu, L.; Li, Z.; Wong, B. M.; Men, Y.; Liu, J., Defluorination of per-and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. *Environmental science & technology* **2019**, *53*, (7), 3718-3728.

74. Dalahmeh, S.; Tirgani, S.; Komakech, A. J.; Niwagaba, C. B.; Ahrens, L., Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. *Science of The Total Environment* **2018**, *631-632*, 660-667.

75. Huset, C. A.; Chiaia, A. C.; Barofsky, D. F.; Jonkers, N.; Kohler, H.-P. E.; Ort, C.; Giger, W.; Field, J. A., Occurrence and Mass Flows of Fluorochemicals in the Glatt Valley Watershed, Switzerland. *Environmental Science & Technology* **2008**, *42*, (17), 6369-6377.