Comparative performance and ecotoxicity assessment of Y₂(CO₃)₃), ZnO/TiO₂, and Fe₃O₄ nanoparticles for arsenic removal from water

H. Salazar^{1,2}, P. M. Martins^{3,4, †}, Daniela Batista^{3,4}, K. P. Shejale⁵, R. K. Sharma⁵, Krishnapriya R.⁵, S. Ferdov¹, G. Botelho², A. Fidalgo-Marijuan⁶, Fernanda Cássio^{3,4} and S. Lanceros-Mendez^{6,7, †}

¹Centre/Department of Physics, ²Centre/Department of Chemistry, ³Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ⁴IB-S – Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057, Braga, Portugal ⁵Department of Chemistry, Indian Institute of Technology of Jodhpur ⁶BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain ⁷IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain

[†] Corresponding authors: <u>pamartins@fisica.uminho.pt</u> and <u>senentxu.lanceros@bcmaterials.net</u>

Supplementary Information

1. Supplementary information for sub-chapter 2.3.

The kinetic curves were fitted according to nonlinear forms of pseudo-first, pseudosecond-order, Elovich, and Bangham models described in equations 1, 2, 3, and 4, respectively:

$$Q_t = Q_e \left(1 - exp^{\left(-k_1 t\right)}\right) \quad (1)$$

$$Q_t = \frac{Q_e^2 k_2 t}{1 + Q_e K_2 t} \tag{2}$$

$$Q_t = \frac{\ln \alpha \beta}{\beta} + \frac{1}{\beta} \ln t \tag{3}$$

$$Q_t = kt^v$$
 (4)

where Q_e and Q_t (mg/g) are the capacities for arsenic adsorption at equilibrium and at a correspondent time, respectively. K_1 (min⁻¹) is the pseudo-first-order adsorption rate constant, K_2 (g/mg min) is the pseudo-second-order adsorption rate constant, α is the initial adsorption rate (mg/g min), and β is the desorption constant (g/mg), k (mg/g) and v (min⁻¹) are constants.

The isotherm curves were fitted to the following models: Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich, which are defined by the equations 5 to 9, respectively:

$$q_{e} = \frac{Q_{max}bC_{e}}{1+bC_{e}}$$

$$q_{e} = K_{F}C_{e}^{1/n}$$

$$q_{e} = \frac{RT}{b_{T}}\ln(K_{T}C_{e})$$

$$q_{e} = Q_{S}exp^{\left(-B_{D}\varepsilon^{2}\right)}$$

$$\varepsilon = RT\ln\left(1+\frac{1}{C_{e}}\right)$$
(9)

where
$$q_e \text{ (mg/g)}$$
 is the As adsorption capacity at a given equilibrium concentration, $C_e \text{ (mg/L)}$ is the arsenic equilibrium concentration, $q_{max} \text{ (mg/g)}$ is the maximum adsorption capacity, $K_L \text{ (L/mg)}$ is the adsorption rate for Langmuir isotherm model, $K_F \text{ (L}^{1/n} \text{ mg}^{(1-1/n)} \text{ g}^{-1}$) is the adsorption capacity of the adsorbent for Freundlich isotherm model, and $1/n$ is a measure of the adsorption intensity, $b \text{ (J/mol)}$ is Temkin constant, $K_T \text{ (L/g)}$ Temkin isotherm constant, $Q_S \text{ (mg/g)}$ is the maximum adsorption capacity, $B_D \text{ (mol}^2/\text{kJ}^2)$ is

Dubinin-Radushkevich constant, ε (kJ/mol) is the adsorption potential, *R* (8.314 J/mol K) is the universal gas constant, *T* (K) is the temperature, *k* and *v* are constants. Regarding 1/n value, the closer its value to 0, the more heterogeneous is the surface of the nanocomposite membrane.

2. Supplementary information for sub-chapter 2.4.

Table S1. pH of the nanosuspensions measured at the beginning and after 48h of exposure.

		рН		
Treatments	Concentrations (mg/L)	Initial	48 h	
Control	0	8.29	8.07	
	50	8.20	7.81	
	100	8.11	7.80	
	250	7.77	7.84	
Fe ₃ O ₄	500	7.45	7.99	
	1000	7.18	7.64	
	2000	6.78	7.49	
	0.1	8.09	7.63	
	1	8.12	7.71	
	5	8.12	7.69	
ZnO/TiO ₂	10	8.09	7.74	
	25	8.03	7.84	
	50	7.93	7.96	
	0.005	8.02	7.74	
	0.05	8.10	7.79	
	0.1	8.11	7.77	
Y ₂ (CO ₃) ₃	0.5	8.12	7.83	
	1	8.11	7.86	
	1.5	8.10	7.88	

3. Supplementary information for sub-chapter 3.2.2.

Figure S1. Adsorption kinetics of (a) $Y_2(CO_3)_3$, (b) ZnO/TiO_2 , and (c) Fe_3O_4 , for As (V) removal ([As] = 100 µg/L; contact time: 30 min; pH = 7).

4. Supplementary information for sub-chapter 3.2.3.

[As] (mg/L)	Y ₂ (CO ₃) ₃		ZnO/TiO ₂		Fe ₃ O ₄	
	E (%)	Q _e (mg/g)	E (%)	Q _e (mg/g)	E (%)	Q _e (mg/g)
0.1	99.6	0.10	99.9	0.10	99.8	0.10
0.25	98.9	0.25	98.7	0.25	98.1	0.25
0.5	98.7	0.49	99.4	0.50	98.9	0.49
0.75	98.9	0.74	99.3	0.74	98.5	0.74
1	98.9	0.99	99.4	0.99	98.8	0.99
2	97.9	1.96	98.6	1.97	98.1	1.96
5	97.5	4.88	98.0	4.90	97.9	4.89
10	97.2	9.72	97.9	9.79	97.6	9.76
15	81.1	12.2	84.8	12.7	83.5	12.5
20	68.3	13.7	70.4	14.1	69.7	13.9

Table S2. Effect of As (V) concentration on efficiency (E) and adsorption capacity (Q_e) of active materials.

Figure S2. Adsorption isotherm models simulation for (a) $Y_2(CO_3)_3$, (b) ZnO/TiO₂, and (c) Fe₃O₄, for As (V) removal (contact time: 30 min; pH = 7).

5. Supplementary information for sub-chapter 3.3.

Figure S3. Deconvolution and peak fitting of FTIR spectra before and after As(V) adsorption by (a - b) $Y_2(CO_3)_3$, (c - d) ZnO/TiO₂, and (e - f) Fe₃O₄.