Supplementary information to "Developing a Triple Helix Approach for CO₂ Utilisation Assessment"

Stephen McCord,^a Katy Armstrong^a and Peter Styring^{a*}

^a UK Centre for Carbon Dioxide Utilisation, Department of Chemical & Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, United Kingdom

Table 1 ESI Selected subcategories and their application to CDU social impact assessment (full framework)

Stakeholder		Aims of LINEP subcategory assessment	Relevance to identified CDU assessment	Suggested indicator(s)	Typical data inputs used for assessing	Suggested external data
Stakenolder	oner subcategory	Anno of otter subcategory assessment	scope	Suggested material(3)	indicator	sources
	Delocalisation & migration	Assess the contribution to delocalization, migration or 'involuntary resettlement' within communities	Changes in land use at scale for economic development can be a driving factor in the creation of displaced persons	Likelihood of forced evictions for technology implementation	Process design calculations, LCI data, geographical data (land use), regional/national data on forced resettlement/compulsory purchase orders atc	OECD land resources statistics
		Assesses how an organization directly or	CDU technologies could bring changes to employment opportunities both directly &	Operational impact on local employment - direct	Process design calculations, labour estimation calculations, employment & labour statistics	World Bank development indicators (employment), national employment & labour statistics
Local	Local employment	indirectly affects local employment.	indirectly, more so if the supply chain is localised	Operational impact on local employment - indirect	Employment & labour statistics, IRENA employment statistics, COMTRADE-type data	World Bank development indicators (employment), national employment & labour statistics
Community			CDU technologies can impact positively &	Operational impact on local land-use & zoning	Process design calculations, LCI data, geographical data (land use)	OECD land resources statistics
			negatively access to resources such as (renewable) electricity, water, land & other products. Additional strains on areas known	Changes to local water supply & security	Process design calculations, LCI data, water scarcity data for country/region	UN AQUASTAT database, national reports/statistics (regional perspective)
	Access to material resources	Assess the extent to which organizations respect/protect/ improve community access to material resources & infrastructure. communities. Opera access to material p (consuming limited i (increasing domestio	to be water/land/energy (renewable & not) constrained may cause problems for communities. Operations may also impact access to material produce negatively (consuming limited resources) or positively (increasing domestic security of supply)	Changes to local electricity & energy supply Changes to local access to material produce	Process design calculations, LCI data, national electricity/energy statistics (e,g, DUKES) COMTRADE-type data & national	World bank WDI & SE4ALL databases, national reports/statistics on electricity & energy consumption/provision UN COMTRADE, EU PRODCOM & OECD databases

						Observatory of economic complexity data
			Potential risks and benefits of CDU plant operation on the communities safety &	Impact on air quality & pollution levels	Process design calculations, LCI data	World Bank WDI database
	Safe & healthy living conditions	Assess how organizations impact community safety & health	health should be assessed to determine potential impacts on the local community (considering both regular operation & accident potential)	Utilisation & risks associated with the use of hazardous substances in the operation	Chemical safety data, LCI data, HAZOP studies	COSHH database, ILO International Chemicals Safety Cards database
Value Chain	Promoting social	Assess whether the organisation promotes	Choices made in technology development/deployment may have unintended impacts on value chains and	Potential for and impact of integration of waste materials into the supply chain	LCI data	LCI databases
Actors	responsibility	among its suppliers	communities involved in these chains. CDU processes offer the potential to utilise 'waste' streams	Risk of utilisation of illicit or conflict materials within supply chain	LCI data, COMTRADE-type data & national production/market statistics	UN COMTRADE, EU PRODCOM & OECD databases, Observatory of economic complexity data
	Consumer health & safety	Assess the existence & scope of systematic efforts to address consumer health & safety across the life cycle	Whilst always beneficial, assessing risks to the H&S of consumers is of particular importance if a new CDU product fulfils the same function of an existing product whilst being chemically non identical – e.g. DME as a fuel	Consumer health & safety risk	Process design calculations, LCI data, Chemical safety data	COSHH database, ILO International Chemicals Safety Cards database
Consumers			Understanding EoL protocol (ease of	Recyclability of product & process elements	Process design calculations, LCI data	LCI databases
	End of life (EoL) responsibility	Assess management efforts to address the social impacts of product or service end-of-life	recyclability/recovery/disposal) is important as an element of the circular economy. Also of interest is the potential impact on health for improper disposal	Potential health risks for improper disposal of product & process elements	Chemical safety data	COSHH database, ILO International Chemicals Safety Cards database
	Child labour	Assess whether the organization is employing child labour as defined by ILO conventions & to identify the nature of any child labour	Choices made in technology development/deployment may have unintended consequences regarding child labour utilisation	Potential for utilization of child labour in supply chain	Process design calculations, LCI data, COMTRADE-type data & national production/market statistics	UN COMTRADE, EU PRODCOM & OECD databases, Observatory of economic complexity data
Workers	Forced Labour	Assess whether there is the use of forced labour in the organization	Choices made in technology development/deployment may have unintended consequences regarding forced labour utilisation	Potential for utilization of forced labour in supply chain	Process design calculations, LCI data, COMTRADE-type data & national production/market statistics	UN COMTRADE, EU PRODCOM & OECD databases, Observatory of economic complexity data
	Equal Opportunities	Assess whether there is any worker	Choices made in technology	Potential for supporting	Process design calculations, LCI data,	UN COMTRADE, EU PRODCOM

		discrimination present in the organization	development/deployment may have	discriminatory practices	COMTRADE-type data & national	& OECD databases,
			unintended consequences regarding	in supply chain	production/market statistics	Observatory of economic
			workplace discrimination			complexity data
				Risk to the H&S of	ILO data on national workplace accident	COSHH database, ILO
	Worker H&S	Assess the rate of workplace incidents and	It is widely understood there is a need to	workers associated with	rate, HAZOP studies, chemical safety	International Chemicals Safety
		prevention/management processes	assess potential H&S risks in manufacturing	operation	data	Cards database, ILO H&S data
				Societal & political		
	Public commitment	Assess to what extent the organization is	This indicator has been changed to consider	support for sustainability	IRENA energy profiles, UN SDG index	IRENA energy profiles, SDG
	to sustainability	engaged in reducing its 'sustainability si	societal commitment to sustainable	initiatives that may	scores	index scores
	issues	impacts' – including public & internal targets	development	impact the operation		
			Technologies have the potential to			UN COMTRADE, EU PRODCOM
	Prevention &	Assess the organizations role in conflicts or	contribute to conflict instigation through	Risk of utilising of	LCI data, COMTRADE-type data &	& OECD databases,
Society	mitigation of	situations that may lead to conflict (violent &	the use of materials and labour along the	goods/materials/services	national production/market statistics	Observatory of economic
	conflicts	non-violent)	supply chain	from areas of conflict		complexity data
			Technologies & development choices have			UN COMTRADE, EU PRODCOM
	Contribution to	Assess to what extent the	the potential to aid (or hinder) in	Utilisation of national	LCI data, COMTRADE-type data &	& OECD databases,
ec	economic	organization/product/service contributes to cor	contributing to economic development	supply chains over	national production/market statistics	Observatory of economic
	development	the economic development of the country	beyond local communities	international		complexity data

Table 2 EIS: Inventory Data for CDU and Sub-processes

ltem	Amine CC for 1 t CO ₂ / 1,2	Hydrogen for 1 t/h ³	Wind per 1 kWh ⁴	Solar per 1 kWh ⁴	Methanol 1 t/h ³	Polymers 1 t ⁵	Mineralisation per kg carbonated block ⁶
Electricity	36-202 kWh/t depending on if CHP available	52 MW	-	-	0.17 MWh	0.01 kwh/kg polyol	0.03 kWh/kg
Heat	Steam 3.7-4.4 GJ or 3.6 GJ from Nat Gas if CHP	-	-	-	0.44 MWh, saturated steam 25bar	0.05 kg steam/kg polyol = 0.14 MJ/kg	0.06 KWh/kg thermal heat
Water	Water needed for amine make up, washing and cooling recycling system used	9.4 t/h deionised water	1 kg/kWh	Average 0.9 kg/kWh to max 4 kg/kWh ⁷	4.4 t/h cooling water, 0.03 t/h boiler water	1.14 kg/kg polypol cooling, 0.55 kg/kg polyol chilled water	0.11 kg/kg

Raw materials	Amines needed for	Pt or Pd Cathode, IrO ₂ or	-	Several toxic, flammable	0.102 kg/h catalyst	PO 0.81kh/kg polyol (0.16	0.48 kg sand/kg and 0.48
	capture	RuO ₂ anode ⁸		and explosive chemicals	Cu/ZnO/Al ₂ O ₃ , 1.46 t	less than conventional)	kg stainless steel slag,
				associated with	CO ₂ /t MeOH, 0.199 t H ₂ /t	all other feeds same as	0.09kg CO ₂ /kg
				manufacture	MeOH	conventional, 0.23 kg	
						CO ₂ /kg polyol, double	
						metal cyanide catalyst	
Wastes	-	0.45 t/h waste water	-		0.56 t/h	-	0.09 kg waste water/kg
Emissions	$1.5 \text{ kg} \text{ MEA per ton CO}_2$	-	25 g CO ₂ /kWh minor	90 g CO₂/kwh	0.077 t/h CO ₂	No delta from reference.	Unknown
	captured to flue gas,		noise issues			Lower CO ₂ emission.	
	water and degradation						
Land	-	Small for plant, large for	44.7 acres/MW	6.1 acres/MW issues with	-	-	-
		electricity		land competition for			
				siting solar farms			
H&S issues	-	H ₂ storage	Bird strikes	-	-	-	-

Table 3 EIS Full Impact calculation table for Methanol in 3 locations

Subcategory	Indicator	Data Calculation method and Data	Scoring method	MeOH	MeOH	MeOH	MeOH	MeOH	MeOH	Justification
		sources		UK	UK	China	China	Chile	Chile	
				Wind	Solar	Wind	Solar	Wind	Solar	
Delocalisation	Likelihood of	Calculate land area needed (factor in	0 = no risk							Reasonably low risk of
& migration	forced evictions	electricity source if dedicated), web	1 = low risk							displacement for economic
	for technology	search for history of forced	2 = med risk	0	0	1	า	1	1	development, wind needs larger
	implementation	evictions/compulsory purchases etc. to	3 = high risk	U	U	Ŧ	2	Ŧ	T	area though likely offshore. Forced
		factor into risk	4 = very high risk							eviction most prevalent in Asia
										followed by Latin America
Local	Locals directly	Process data & calculations, estimation	0 = numerous, above local average pay jobs							Higher job creation in solar energy
employment	employed due to	from NOL for operators, local	created							than wind (x2-3 times greater per
	activity	unemployment figures, average salary in	1 = high number of jobs created	1	Ω	1	Ο	1	Ω	MW)

		region vs average salary of plant operator	2 = medium level of jobs created							
		in region	3 = low level of jobs created							
			4 = no benefit to local pop – zero jobs							
	Locals indirectly	IRENA employment calculations,	0= highly localized supply chain							Localised supply apart from
	employed due to	COMTRADE/BP to check if process inputs	1 = predominately local supply chain							catalysts
	activity	can be sourced locally	2 = mixed location supply chain	1	1	1	1	1	1	
			3 = mainly international supply chain	_	_	_	_	_	_	
			4 = no benefit							
Access to MR	Changes to local	Calculate land area needed (factor in	0=minimal issues							China and Chile have considerable
	land use	electricity source if dedicated) and	1= low							prospects for solar deployment. UK
		consideration for how much space is	2= moderate	1	4	2	1	2	1	has access to large wind resources,
		available	3=high	_		_	_	_	_	though land for solar an issue
			4=Significant issues							5
	Changes to local	https://worldwater.io/	0=minimal issues							China has low level of people living
	water supply &		1= low							in water scarce areas (36%)
	security	Consideration of water scarcity within the	2= moderate	2	2	1	2	2	2	UK and Chile are higher (46% and
	,	country compared to amount of water	3=high	_	_	-			_	52% respectively).
		needed for production	4=Significant issue							
	Changes to local	https://www.irena.org/Statistics/Statistic	0=minimal issues with capacity (or							Electricity demand for MeOH
	electricity supply	al-Profiles	dedicated supply)							production is high due to water
		Consideration of amount electricity	1= low with capacity							electrolysis for H2. China has least
		needed per FU and amount of solar or	2= moderate with capacity	2	2	4	1		2	capacity issues, UK wind has
		wind energy produced per country	3=high with capacity	2	3	1	1	4	3	greater potential for expansion.
			4=Significant issue with capacity							Solar & wind capacity are small in
										Chile, where hydro is dominant
										renewable energy source
	Changes to local	https://comtrade.un.org/	0= very high change							Chile exports large amount of
	access to material	Consideration of how much methanol is	1= high significant change							methanol. UK and China import
	produced	imported and exported	2= moderate change	2	2	2	2	4	4	more methanol than they export so
			3=small change							this will increase local security of
			4=no change							supply.
Safe & Healthy	Impact on air	http://wdi.worldbank.org/table/WV.3	0= no/positive impact							Air pollution is worst in China and
Living	quality/pollution	Using the air pollution data per country	1 = low impact							best in UK. The amines from the
conditions (LC)	levels -	and adding possible additional air	2 = medium impact	0	0	2	2	1	1	capture process will add to local air
	production	pollution from process	3 = high impact							pollution.
			4 = very high impact							
	Utilisation of	Consideration of the hazards created raw	0= no impact							Use of amines and H ₂ (H ₂ needs
	hazardous	materials used in process, storage and	1 = low impact							storage)
	substances in	transportation of product. Use of Hazop	2 = medium impact	2	2	2	2	2	2	

	process	data for materials.	3 = high impact							
			4 = very high impact							
Promoting	Use of wastes and	Consideration of how many raw material	0= very high use of sustainable/wastes							Inputs are sustainable as renewable
social	other sustainably	as sourced from waste or are sustainable	1 = high use							H ₂ production is used, however
responsibility	materials		2 = medium use	1	1	1	1	1	1	electrodes use platinum group
			3 = low use							metals
			4 = no use/unstainable							
	Social	Risk of utilisation of illicit or conflict	0= no risk							Platinum group metals used but
	responsibility in	materials within supply chain	1 = low risk							sustainable reporting is common
	supply chain	https://www.usgs.gov/centers/nmic/plati	2 = medium risk	1	1	1	1	1	1	for the metals therefore
		num-group-metals-statistics-and-	3 = high risk							sustainably producer could be
		information	4 = very high risk							chosen
Consumer	Consumer health	Consideration as to whether product	0= no risk							Methanol predominantly used in
health & safety	& safety risk	poses any consumer H&S issues. Data	1 = low risk							industry rather than by consumers,
		from COSHH	2 = medium risk	n	2	2	2	2	n	however poses acute health
			3 = high risk	Z	Z	Z	Z	2	Z	hazards for oral , dermal and
			4 = very high risk							inhalation toxicity and is highly
										flammable.
EOL	Recyclability of	Consideration of raw materials, wastes	0= no impact/ easily fully recyclable							Methanol is not a product able to
responsibility	product & process	and products in respect to their ability to	1 = low impact/some issues recycling							be recycled directly is going to emit
	elements	be recycled. Consideration of ease of	2 = medium impact/ recycling + end of life	2	2	2	2	2	2	CO_2 , can be recycled by air capture
		recycling.	pyrolysis/energy recovery	3	5	3	3	5	3	of CO ₂
			3 = high impact/ recycling via DAC							
			4 = very high impact/ cannot be recycled							
	Potential health	Potential impact on health, data from	0= no impact							No issues for product disposal, high
	risks for improper	knowledge of process elements and	1 = low impact							use of electrolysers for $H_2 =$
	disposal of	product disposal.	2 = medium impact	1	1	1	1	1	1	disposal of used electrodes
	product & process		3 = high impact							
	elements		4 = very high impact							
Child labour	Potential for	http://wdi.worldbank.org/table/2.6	0= no likelihood							Chile has low levels of child labour
	utilization of child	Likelihood that their might be child labour	1 = low likelihood							though these are mainly
	labour in supply	occurring in supply chain and scenario	2 = medium likelihood	0	0	0	0	1	1	concentrated in the services and
	chain	country	3 = high likelihood							agricultural industries.
			4 = very high likelihood							
Forced labour	Potential for	Consideration of likelihood of forced	0= no likelihood							Higher risk in Africa, Asia and
	utilization of	labour in supply chain and impact	1 = low likelihood							Pacific. Metal catalysts likely to be
	forced labour in	http://ilo.org/wcmsp5/groups/public/@d	2 = medium likelihood	1	1	1	1	1	1	sourced from Africa however
	supply chain	greports/@dcomm/documents/publicatio	3 = high likelihood							quantities needed are low.
		<u>n/wcms_575479.pdf</u>	4 = very high likelihood							

Equal Opportunities	Potential for supporting discriminatory practices in supply chain	Labour force participation rate in the country. Data from World Bank regarding employment in location.	0= no likelihood of supporting discrimination 1 = low likelihood 2 = medium likelihood 3 = high likelihood 4 = very high likelihood	0	0	1	1	0	0	UK and Chile have high levels of female employment. China has much lower levels of employment which could lead to discriminatory practice.
Worker health & safety	Worker health & safety risk	Country H&S data and consideration of process https://ilostat.ilo.org/topics/safety-and- health-at-work/	0= no impact 1 = low impact 2 = medium impact 3 = high impact 4 = very high impact	2	2	2	2	3	3	H ₂ storage & transportation and possible exposure to amines are biggest issues regarding H&S. UK has a better H&S Chile. Unknown for China
Public commitment to sustainability issues		Irena Energy profiles, commitment to renewable energy targets and frequency of environmental policy <u>http://solability.com/the-global-</u> <u>sustainable-competitiveness-index/the-</u> <u>index</u> https://www.sdgindex.org/	0= very high 1 = high commitment 2 = medium commitment 3 =low commitment 4 = no commitment	1	1	2	2	2	2	Chile has very high renewable energy targets, but with China is lower in the Global sustainable competitiveness ranking than UK
Prevention & mitigation of conflicts	Potential for utilisation of goods/materials/s ervices	Consideration of sources of raw materials for the process. Are these from areas with conflict or could alternative sourcing contribute to mitigation?	0= no impact 1 = low impact 2 = medium impact 3 = high impact 4 = very high impact	1	1	1	1	1	1	All countries would likely be sourcing metals externally therefore rankings similar.
Contribution to economic development	Use of local supply chain	How many raw materials can be sourced local reducing demand for imports and therefore increasing local economy.	0= very high use 1 = high use 2 = medium use 3 = low use 4 = no use	1	1	1	1	1	1	Raw materials apart from metals can all be sourced locally, only CO_2 and water required.

Subcategory	Indicator	Data Calculation method and Data sources	Scoring method – where 2 scoring methods are given, average of both scores is calculated	MeO H UK Wind	MeO H UK Solar	Poly mer UK Wind	Poly mer UK Solar	Miner al UK Wind	Miner al UK Solar	Justification
Delocalisation & migration	Likelihood of local forced evictions for technology implementation	Calculate land area needed (factor in electricity source if dedicated), web search for history of forced evictions/compulsory purchases etc to factor into risk	0 = no risk 1 = low risk 2 = med risk 3 = high risk 4 = very high risk	0	0	0	0	0	0	Highly unlikely in UK scenario, most land used for MeOH solar but this likely to be agricultural land
Local employment	Locals directly employed due to activity	Process data & calculations, estimation from NOL for operators, local unemployment figures, average salary in region vs average salary of plant operator in region	 0 = numerous, above local average pay jobs created 1 = high number of jobs created 2 = medium level of jobs created 3 = low level of jobs created 4 = no benefit to local pop – zero jobs 	1	0	3	3	3	3	Higher job creation in solar energy than wind (x2-3 times greater per MW), however polymer and minerals use much lower levels of renewable energy therefore just
	Locals indirectly employed due to activity	IRENA employment calculations,COMTRADE/BP to check if process inputs can be sourced locally	0= highly localized supply chain 1 = predominately local supply chain 2 = mixed location supply chain 3 = mainly international supply chain 4 = no benefit	1	1	1	1	0	0	Localised apart from catalysts, for mineralisation use of waste local materials
Access to MR	Changes to local land use	Calculate land area needed (factor in electricity source if dedicated) and consideration for how much space is available	0=minimal issues 1= low 2= moderate 3=high 4=Significant issues	2	4	1	1	1	1	UK has access to large offshore wind resources, though land for solar an issue. Electricity demand for MeOH highest.
	Changes to local water supply & security	https://worldwater.io/ Consideration of water scarcity within the country compared to amount of water needed for production	0=minimal issues 1= low 2= moderate 3=high 4=Significant issue	2	3	0	0	0	1	Minimal water needed for Polymers and Minerals, though solar had high water demand per MWh
	Changes to local electricity supply	https://www.irena.org/Statistics/Statistic al-Profiles Consideration of amount electricity needed per FU and amount of solar or wind energy produced per country	0=minimal issues with capacity (or dedicated supply) 1= low with capacity 2= moderate with capacity 3=high with capacity 4=Significant issue with capacity	2	2	0	0	0	0	MeOH has high electricity demand due to H_2 production.
	Changes to local access to material produced	https://comtrade.un.org/ Consideration of how much methanol is imported and exported	0=very high change 1= high significant change 2= moderate change 3=small change 4=no change	2	2	3	3	4	4	More methanol is imported than exported, Polyurethane imports and exports are similar and high value, mineral imports are lower value
Safe & Healthy Living	Impact on air quality/pollutio	http://wdi.worldbank.org/table/WV.3 Using the air pollution data per country	0= no/positive impact 1 = low impact							Mineralisation has potential to be carbon negative technology reducing

Table 4 EIS Full Impact calculation table for comparison of methanol, polymers and minerals via CDU in UK scenario

conditions (LC)	n levels - production	and adding possible additional air pollution from process	2 = medium impact 3 = high impact 4 = vory bigh impact							CO ₂ levels
	Utilisation of hazardous substances in process	Consideration of the hazards created raw materials used in process, storage and transportation of product. Use of Hazop data for materials.	0= no impact 1 = low impact 2 = medium impact 3 = high impact 4 = very high impact	2	2	0	0	0	0	Use of amines and H ₂ (H ₂ needs storage) for MeOH. Much lower level of amine needed for polymers and minerals
Promoting social responsibility	Use of wastes and other sustainably materials	Consideration of how many raw material as sourced from waste or are sustainable	 0= very high use of sustainable/wastes 1 = high use 2 = medium use 3 = low use 4 = no use/unstainable 	1	1	2	2	0	0	Mineralisation uses wastes as feedstocks, methanol uses some platinum group metals for electrolysis, polymers use more materials that could be sourced from fossil resources, care needs to be taken to reduce this.
	Social responsibility in supply chain	Risk of utilisation of illicit or conflict materials within supply chain	0= no risk 1 = low risk 2 = medium risk 3 = high risk 4 = very high risk	1	1	1	1	0	0	Metal catalyst and electrode metals have very low possibility of being sourced illicitly or from conflict areas.
Consumer health & safety	Consumer health & safety risk	Consideration as to whether product poses any consumer H&S issues. Data from COSHH	0= no risk 1 = low risk 2 = medium risk 3 = high risk 4 = very high risk	2	2	0	0	0	0	Methanol predominantly used in industry rather than by consumers, however poses acute health hazards for oral, dermal and inhalation toxicity and is highly flammable
EOL responsibility	Recyclability of product & process elements	Consideration of raw materials, wastes and products in respect to their ability to be recycled. Consideration of ease of recycling.	0= no impact/ easily fully recyclable 1 = low impact/some issues recycling 2 = medium impact/ recycling + end of life pyrolysis/energy recovery 3 = high impact/ recycling via DAC 4 = very high impact/ cannot be recycled	3	3	2	2	0	0	Methanol is not a product able to be recycled directly is going to emit CO_2 , can be recycled by air capture of CO_2 . Polymers recycled until end of life. Minerals do not need recycling, though can be crushed and reused
	Potential health risks for improper disposal of product & process elements	Potential impact on health, data from knowledge of process elements and product disposal.	0= no impact 1 = low impact 2 = medium impact 3 = high impact 4 = very high impact	1	1	0	0	0	0	No issues for product disposal, high use of electrolysers for H ₂ = disposal of used electrodes
Child labour	Potential for utilization of child labour in supply chain	http://wdi.worldbank.org/table/2.6 Likelihood that their might be child labour occurring in supply chain and scenario country	0= no likelihood 1 = low likelihood 2 = medium likelihood 3 = high likelihood 4 = very high likelihood	1	1	0	0	0	0	MeOH uses high level of catalyst/rare metals which can be sourced from areas using child labour
Forced labour	Potential for utilization of	https://ilostat.ilo.org/	0= no likelihood 1 = low likelihood							MeOH uses high level of catalyst/rare metals which can be sourced from

	forced labour in	http://ilo.org/wcmsp5/groups/public/@dgr	2 = medium likelihood							areas using forced labour
	supply chain	eports/(a)dcomm/documents/publication/w	3 = high likelihood							
		<u>cms_575479.pdf</u>	4 = very high likelihood							
Equal	Potential for	Labour force participation rate in the								Not likely in UK nowever could play a
Opportunities	supporting	country. Data from world Bank regarding	1 = IOW likelihood	1	1	1	1	0	0	factor within supply chain of metals
	discriminatory	employment in location.	2 = medium likelinood	L I	L 1	1	L	0	0	for catalysts
	practices in		3 = high likelihood							
	supply chain		4 = very high likelihood							
Worker health	Worker health	Country H&S data and consideration of	0= no impact							H ₂ storage & transportation and
& safety	& safety risk	process	1 = low impact		_					possible exposure to amines are
		https://ilostat.ilo.org/topics/safety-and-	2 = medium impact	2	2	1	1	1	1	biggest issues regarding H&S for
		health-at-work/	3 = high impact							MeOH.
			4 = very high impact							
Public		Irena Energy profiles, commitment to	0= very high							MeOH could be included in
commitment to		renewable energy targets and frequency	1 = high commitment							renewable energy targets and help
sustainability		of environmental policy	2 = medium commitment							with grid balancing, mineralisation
issues		http://solability.com/the-global-	3 = low commitment	1	1	2	2	1	1	can count towards net zero targets as
		sustainable-competitiveness-index/the-	4 = no commitment							a carbon dioxide sink
		index								
		https://www.sdgindex.org/								
Prevention &	Potential for	Consideration of sources of raw	0= no impact							High level of catalyst used for MeOH
mitigation of	utilisation of	materials for the process. Are these from	1 = low impact							which may be sourced from unstable
conflicts	goods/materials	areas with conflict or could alternative	2 = medium impact	1	1	0	0	0	0	regions.
	/services	sourcing contribute to mitigation?	3 = high impact	_	-	Ŭ	Ū	U U	Ū	-
			4 = very high impact							
Contribution to	Use of local	How many raw materials can be sourced	0= very high use							Mineralisation recycles waste
economic	supply chain	local reducing demand for imports and	1 = high use							products, MeOH predominantly local
development		therefore increasing local economy.	2 = medium use	1	1	2	2	0	0	supply chain though catalysts not
			3 = low use	-	-	2	<u> </u>		0	local. PO may be externally sourced
			4 = no use							for polymers

Notes and references

- 1 T. Kuramochi, A. Ramírez, W. Turkenburg and A. Faaij, *Prog. Energy Combust. Sci.*, 2012, **38**, 87–112.
- 2 X. Zhang, B. Singh, X. He, T. Gundersen, L. Deng and S. Zhang, *Int. J. Greenh. Gas Control*, 2014, **27**, 289–298.
- 3 M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti and E. Tzimas, *Appl. Energy*, 2016, **161**, 718–732.
- 4 A. Evans, V. Strezov and T. J. Evans, *Renew. Sustain. Energy Rev.*, 2009, **13**, 1082–1088.

- 5 C. Fernández-Dacosta, M. Van Der Spek, C. R. Hung, G. D. Oregionni, R. Skagestad, P. Parihar, D. T. Gokak, A. H. Strømman and A. Ramirez, *J. CO2 Util.*, 2017, **21**, 405–422.
- 6 A. Di Maria, R. Snellings, L. Alaert, M. Quaghebeur and K. Van Acker, *Int. J. Greenh. Gas Control*, 2020, **93**, 102882.
- G. B. Frisvold and T. Marquez, J. Contemp. Water Res. Educ., 2013, **151**, 106–116.
- 8 S. Shiva Kumar and V. Himabindu, *Mater. Sci. Energy Technol.*, 2019, **2**, 442–454.