Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2021

SUPPLEMENTARY MATERIAL

Synthetic Sequence Strategy Enabled Hollow Metal-Organic

Frameworks Engineering

Figure S1. The transformation of Hf₆ SBUs in UiO-66 into soluble Hf₁₂(OH)₁₄O₈(H₃CCO₂)₁₈ or Hf₁₂(OH)₈O₈(H₃CCO₂)₂₄ under etching conditions. Hf₁₂(OH)₁₄O₈(H₃CCO₂)₁₈ consists of two Hf₆ clusters which are bridged by six μ_2 -OH. Hf₁₂(OH)₈O₈(H₃CCO₂)₂₄, consists of two Hf₆ clusters which are bridged by four bridged CH₃CO₂⁻.

Figure S2. PXRD of hollow UiO-66.

Figure S3 N_2 sorption isotherms at 77 K and the corresponding pore size distribution of hollow UiO-66.

Figure S4. the TGA of hollow UiO-66

Figure S5 N_2 sorption isotherms at 77 K and the corresponding pore size distribution of hollow MOF-808.

Figure S6. the TGA of hollow MOF-808.

Figure S7. PXRD of MOF-808 and hollow MOF-808.

Figure S8. TEM images of MOF-808 with different amounts of benzoic acid in 2 mL of DMF and 0.2 mL of H_2O for 16 hours: (a) 213 mg mL; (b) 366 mg; (c) 427 mg and (d) 540 mg.

Figure S9 N_2 sorption isotherms at 77 K and the corresponding pore size distribution of hollow PCN-223.

Figure S10. the TGA of hollow PCN-223