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Materials & methodology

monoHKUST-1 Synthesis. moneHKUST-1 was synthesised using the previously reported method.! In
a typical synthesis, 6.42 mmol of 1,3,5-benzentricarboxylic acid (HsBTC) (1.35 g) and 6.42 mmol of
Cu(NO3)2:2.5H20 (1.5 g) were mixed separately in 100 mL ethanol, and sonicated in an ultrasonic
bath for 10 minutes until the solids are completely dissolved. After dissolving the solutions separately,
Cu(NO3)2-2.5H20 was added to trimesic acid and stirred well at room temperature for 10 min. The
reacted solution is then transferred to a falcon tube, centrifuged, and washed with ethanol for 10
minutes (3 x 25 ml, 4200 rpm). After last centrifugation, the supernatant was slowly poured, and the
samples are dried overnight to form the monoHKUST-1. Activation was carried out by heating to 120

°C under vacuum overnight.

monoU10-66 & monoUiO-66-NH2 Synthesis. monoUi0-66 and monoUiO-66-NH2 were synthesised using
the previously reported methods.? In a typical monoUiO-66 synthesis, 7.25 mmol of benzene-1,4-
dicarboxylic acid (H.BDC) (1.20 g) and 5.0 mmol of zirconium(IV) oxychloride octahydrate (1.61
g) were dissolved in 30 ml of N,N-dimethylformamide (DMF). In a monoUiO-66-NH2 synthesis,
H>BDC is substituted with 2-aminoterephthalic acid (H2N-H.BDC). 1.5 mL of concentrated
hydrochloric acid (37 %) and 2.0 ml of glacial acetic acid were added to the above solution with
strong stirring. The resulting solution was sealed in a 100 mL Pyrex Schott bottle and heated to 100
°C for 2 h. 50 ml of DMF was added to the MOF gel and vigorously mixed. The diluted suspension
(7.5 mL per tube) was centrifuged (5 min, 4750 rpm) and the supernatant decanted. The gel was
washed again with DMF, centrifuged (4750 rpm) and dried to produce monolithic materials. The
obtained monoliths were soaked in acetone (3 x 5 ml, 24 h) and methanol (3 x 5 ml, 24 h) and then
dried at room temperature overnight. Final materials were activated by heating to 120 °C under

vacuum overnight.

HKUST-1 Synthesis. HKUST-1 was synthesized following previously published procedure.® In a

typical reaction, 1.00 g (4.76 mmol) of H3BTC and 2.00 g (6.87 mmol) of Cu(NO3)2-3H.O were
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mixed and suspended in 20 mL DMF followed by stirring and sonication for 10 minutes. Ethanol (20
mL) was added to this suspension followed by additional stirring and sonication. Finally, deionised
water (20 mL) was added to the suspension and the mixture was stirred and sonicated for 30 minutes
to allow for complete dissolution of all components. The mixture was heated at 85 “C for 24 hours,
whereupon blue crystals were obtained, separated via filtration, washed and immersed in methanol.
The methanol solvent was exchanged twice a day for three days. Final materials were activated by

heating to 180 °C under vacuum overnight.

UiO-66 Synthesis. UiO-66 was synthesized following previously published procedure.* It was
synthesized by dissolving ZrCls (0.053 g, 0.227 mmol) and H.BDC (0.034g, 0.227 mmol) in DMF
(24.9 g, 340 mmol) at room temperature. The thus obtained mixture was sealed in a Teflon vessel and
placed in a pre-heated oven at 120 °C for 24 hours. Crystallization was carried out under static
conditions. After cooling in air to room temperature the resulting solid was filtered, washed 3x times
with DMF and dried at room temperature. The obtained UiO-66 was soaked in acetonitrile and the
solvent was exchanged twice a day for three days before the UiO-66 sample was used for sorption

experiments. Final materials were activated by heating to 150 °C under vacuum overnight.

UiO-66-NH2 Synthesis. UiO-66-NH. was synthesized following previously published procedure.> A
standard upscaled synthesis of UiO-66-NH> was performed by dissolving ZrCls (1.50 g, 6.4 mmol)
and H2N-H2BDC (1.56 g, 6.4 mmol) in DMF (180 mL) at room temperature in a volumetric flask.
The resulting mixture was placed in a preheated oven at 80 °C for 12 h and then held at 100 °C for
24 h. After the solution was cooled to room temperature in air, the resulting solid was filtered and
repeatedly washed with absolute ethanol for 3 days while heated at 60 °C in a water bath. The
resulting yellow powder was filtered, transferred to a Schlenk flask, and dried under vacuum at

ambient temperature. Final materials were activated by heating to 150 °C under vacuum overnight.

Powder X-ray diffraction (PXRD) patterns were recorded with a Bruker D8 diffractometer at 40

kV and 40 mA using CuKq (A = 1.5405 A) radiation with a step of 0.02° at a scanning speed of 8 s
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per step. Monolith powders were prepared for PXRD analysis by gently crushing with a pestle and

mortar before being placed on a zero-background silicon wafer.

Thermogravimetric analysis (TGA) was recorded under nitrogen using TGA instrument TA Q50.
Platinum pans and a flow rate of 60 mL min™* for the nitrogen gas were used for the experiments. The

data was collected at a temperature ramp of 10 °C min up to 700 °C.

Mercury porosimetry was obtained up to a final pressure of 2,000 bar using an AutoPore IV 9500
instrument from Micromeritics. This technique was used to estimate the particle density of both
powders and monoliths at atmospheric pressure. Prior to the analysis, all samples were activated
overnight at 120 °C (vacuum) before measuring the mass, and then degassed in situ thoroughly before

the mercury porosimetry.

Gas adorption measurements. Ultra-high-purity grade CHa4, N2 and CO2 were used for gas sorption
experiments. Adsorption experiments (up to 1 bar) for different pure gases were performed on
Micromeritics 3Flex surface area and pore size analyzer. About 200 mg of activated samples were
used for the measurements. A Julabo temperature controller was used to maintain a constant
temperature in the bath through the duration of the experiment. Samples were degassed on a Smart

VacPrep instrument prior to the analysis.

Isosteric heat of adsorption (Qst) calculations. A virial-type expression of the form below was
used to fit the combined isotherm data for all the compounds at 273 and 298 K, where P is the
pressure described in Pa, N is the adsorbed amount in mmol/g, T is the temperature in K, aiand b;
are virial coefficients, and m and n are the number of coefficients used to describe the isotherms. Qst
is the coverage-dependent enthalpy of adsorption and R is the universal gas constant. All the related

fitting curves are shown in Figure S14-Figure S16.

m n

1nP=lnN+Za-Ni+Z(n)b-Ni
i=0 l =0 k7
i= i=
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IAST selectivity calculations. The selectivity for the adsorbate mixture composition of interest were
predicted from the single-component adsorption isotherms using Ideal Adsorbed Solution Theory
(IAST).% First, the single-component isotherms for the adsorbates at 293 K were fitted to the dual-

site Langmuir-Freundlich equation (Table S1-S3):

1 1
n(P) = "mlblp(?) + nmzbzp(tZ)

1
1+ blP(ﬁ) 1+ bZP(E)

In this equation, n is the amount adsorbed per mass of material (in mol/kg), P is the total pressure (in
kPa) of the bulk gas at equilibrium with the adsorbed phase, nm1 and nm2 are the saturation uptakes
(in mol/kg) for sites 1 and 2, by and b are the affinity coefficients (in kPa™) for sites 1 and 2, and t;
and t> represent the deviations from the ideal homogeneous surface (unit-less) for sites 1 and 2. The
parameters that were obtained from the fitting for all the three compounds are found in Tables S1-
S3, respectively. The final selectivity for adsorbate i relative to adsorbate j was calculated using the

following:

Xi Yj
Sifi =35
i Vi

Here, xi and x; are the mole fractions of components i and j, respectively, in the adsorbed phase, and

yiand y; are the mole fractions of components i and j, respectively, in the gas phase.

Dynamic mixed gas breakthrough studies. In a typical experiment, ca. 0.3 g of pre-activated
sample was placed in a quartz tube (& = 8 mm) to form a fixed bed held in place using quartz wool.
For monolithic samples, individual monoliths were broken and sieved to reduce the particle diameter
to ca. 2 mm to ensure good packing within the sample tube. Each sample was heated to 353 K under
a dry helium flow to remove atmospheric contaminants. Upon cooling, the chosen gas mixture was

passed over the packed bed with a total flow rate of 2 cm® min™ at 298 K. The outlet gas concentration
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was continuously monitored using an Agilent 5975 MSD mass spectrometer (MS). Upon complete
breakthrough and saturation of the packed bed adsorbent, the gas mixed is switched off and dry
helium was flowed over the solid. Heating was switch on and samples were heated to 353 K to aid

regeneration.

To calculate the CO> uptake, initially the gas mixture is passed through an empty reactor containing
quartz wool at a flow rate of 2 cm® min as a blank reference. The gas flow is constantly monitored
using the MS. The CO: curve is integrated to calculate the area of the curve (Aref). Upon completion
of a CO; breakthrough experiment with an adsorbent, the area of the CO> adsorption curve is also

integrated (Aexp). To calculate the total amount of CO. adsorbed, the following equation is used:
Total CO, Uptake = (Aref — Aexp) X CO2 flow (cm® min™)

Gravimetric CO2 uptake experiments. Gravimetric uptakes were recorded using a TA Q50
thermogravimetric analyser (TGA). A flow rate of 20 cm® min was used for all gases during uptake
experiments. Samples were initially heated to 398 K under a 1 bar N2 flow of 20 cm® min* for 2 h.
Once the weight loss stabilises, the sample allowed cool to room temperature before being exposed
to a 1 bar CO; flow of 20 cm® min'. The weight changes during CO2 adsorption step were monitored

continuously under isothermal condition at 298 K.
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Powder X-Ray Diffraction
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Figure S1: Powder X-ray diffraction patterns for monoHKUST-1.
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Figure S2: Powder X-ray diffraction patterns for monoUiO-66.
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Figure S3: Powder X-ray diffraction patterns for monoUiO-66-NHo.

Thermogravimetric analysis (TGA)
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Figure S4: Thermogravimetric analysis for monoMOFs.
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77 K N2 adsorption and desorption isotherms

(A) 600 (B) 500
HKUST-1 HKUST-1
— 500 A & A ANA A RAMAANAAA @ o mO8 0% 13 - [S3 ] |
o YT E 400+ swe®
E h (‘”
G £
..é/ 400 gwem ®© *OP 23 =] . [SI »| % 300
o @
S 300 2
] o]
E %200_ Ak Aok B AN A A& A AL A LAMNAACAAL
g 200 ﬁ
5 :
° =
> 100 >° 100
* Monolith « Monolith
4 Powder 4 Powder
0 T T T T T 0 T T T T T
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 08 1.0
Relative Pressure (P/P,) Relative Pressure (P/P_)
Figure S5: (A) Gravimetric and (B) volumetric 77K N2 adsorption/desorption
isotherms for monoHKUST-1.
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Figure S6: (A) Gravimetric and (B) volumetric 77K N2 adsorption/desorption
isotherms for monoUiO-66.
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Figure S7: (A) Gravimetric and (B) volumetric 77K N2 adsorption/desorption
isotherms for monoUiO-66-N Ho.
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BETSI calculated BET areas

BETSI Analysis for HKUST-1
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Figure S8: BETSI calculated BET area for HKUST-1.
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BETSI Analysis for monoliO-66
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Figure S11: BETSI calculated BET area for monoUiO-66.
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Figure S12: BETSI calculated BET area for UiO-66-NHo.
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Figure S13: BETSI calculated BET area for monoUiO-66-NHa.
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Single-component gas adsorption studies
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Figure S14: (A) 298K and (B) 273K CO., N2 and CH4 adsorption/desorption
isotherms for monoHKUST-1.
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Figure S15: (A) 298K and (B) 273K CO., N2 and CH4 adsorption/desorption
isotherms for monoUiO-66.
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Figure S16: (A) 298K and (B) 273K CO2, N2 and CH4 adsorption/desorption
isotherms for monoUiO-66-NH..
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Figure S17: (A) Gravimetric and (B) volumetric 298K CO, adsorption/desorption
isotherms for monoHKUST-1 and powdered HKUST-1.
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Figure S18: (A) Gravimetric and (B) volumetric 298K CO, adsorption/desorption
isotherms for monoUiO-66 and powdered UiO-66.
(A) 7o (B) 7
298K 298K
F
60 + “‘A 60 O‘D.O‘Q-
— Ll @ & -
o 50 ~ o £ 50 o
s &A -0 O® o o]
£ & o - o 4 *
L 40 NP £ 40 . LAk
g a B - ;’ & N ah -
&
£ 30+ ate® © 30 ® ackd
35 . a * s
a -] * ut
o™ *
8 20 A S 207 . et
P Q O A &
104 ° 104 a
s UiO-66-NH, Monolith ' + UiO-66-NH, Monolith
0 4+ UiO-66-NH, Powder 04 & UiO-66-NH, Powder
0 200 400 500 800 0 200 400 600 800

Pressure (mmHg)

Pressure (mmHg)

Figure S19: (A) Gravimetric and (B) volumetric 298K CO, adsorption/desorption
isotherms for monoUiO-66-NH. and powdered UiO-66-NHa.
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Isosteric heat of adsorption (Qst)
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Figure S20: Fitting of the CO> adsorption isotherms at 298K and 273K for monoHKUST-1 to the

virial equation.
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Figure S21: Fitting of the CO. adsorption isotherms at 298K and 273K for monoUiO-66 to the

virial equation.
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Figure S22: Fitting of the CO- adsorption isotherms at 298K and 273K for monoUiO-66-NH> to the

virial equation.
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Figure S23: CO; isosteric heats of adsorption (Qst) for monoHKUST-1, monoUi0-66 and monoUiO-66-
NHo.
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Dual-Site Langmuir-Freundlich Fittings

Table S1: Dual-site Langmuir-Freundlich fitting parameters for CO2 adsorption at 298 K.

Material Q1 Q2 Ki K; n: N2
monoHKUST-1 1.06262 423.291 0.015992  0.000367  0.956619  0.997919
monoU1O-66 89.866 2.125E-17 0.0015654 4.0733E-7  0.96962  9.8224E-6

monoUiO-66-NH: 78.6819 3.35458  0.0019191 0.0016692  0.999818 1.00644

Table S2: Dual-site Langmuir-Freundlich fitting parameters for N2 adsorption at 298 K.

Material Q1 Q2 K1 K, Ny nz
monoHKUST-1 11.5122 41.6868 0.000784 0.000246 1.04521 1.73888
monoU10-66 60.1968 0.434225 0.00012138 0.0028097 1.0757 0.863726

monoUi0-66-NH: 28.0078 0.366539  0.00025673 0.0030404  1.06076 0.862987

Table S3: Dual-site Langmuir-Freundlich fitting parameters for CH4 adsorption at 298 K.

Material Q1 Q2 K1 K, ni Nz
monoHKUST-1 108.51 4.19E-11 0.000276 2.39E-12 0.985486  4.02E-07
monoU1O-66 0.456142 33.7456  0.0056682 0.0005371  0.001992 1.00043

monoUiO-66-NH,  0.897495 54.9866  0.0475446 0.00036784 0.246157 1.02974

Ideal Adsorbed Solution Theory (IAST) studies
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Figure S24: TAST selectivity’s for 15% CO2/85% N2 and 50% CO2/50% CHa v/v gas mixtures for
monoHKUST-1 at 298K.
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Figure S25: TAST selectivity’s for 15% CO2/85% N2 and 50% CO2/50% CHa v/v gas mixtures for
monoU10-66 at 298K.
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Figure S26: TAST selectivity’s for 15% CO2/85% N2 and 50% CO2/50% CHa v/v gas mixtures for
monoUiO'66'NH2 at 298K
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Figure S27: IAST predicted uptakes for (A) 15% CO/85% N2 and (B) 50% CO./50% CHjs v/v gas
mixtures for monoHKUST-1 at 298K with breakthrough results for comparison.
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Figure S28: IAST predicted uptakes for (A) 15% CO2/85% N2 and (B) 50% CO./50% CHjs v/v gas

mixtures for monoUiO-66 at 298K with breakthrough results for comparison.
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Figure S29: IAST predicted uptakes for (A) 15% CO./85% N2 and (B) 50% CO2/50% CHs v/v gas

mixtures for monoUiO-66-NH; at 298K with breakthrough results for comparison.
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CO2 uptake kinetics studies
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Figure S30: 1.0 bar gravimetric CO- uptake versus time for monoHKUST-1 at 298 K.
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Figure S31: 1.0 bar gravimetric CO> uptake versus time for monoUiO-66 at 298 K.
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Figure S32: 1.0 bar gravimetric CO. uptake versus time for monoUiO-66-NH: at 298 K.
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Dynamic mixed gas breakthrough studies
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Figure S33: (A) Gravimetric and (B) volumetric 15% CO./85% N2 v/v breakthrough studies for
powdered HKUST-1 and moneHKUST-1 at 298K (Total flow = 2 cm® minY).
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Figure S34: (A) Gravimetric and (B) volumetric 15% CO./85% N2 v/v breakthrough studies for
powdered UiO-66 and mono UiO-66 at 298K (Total flow = 2 cm® min™).
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Figure S35: (A) Gravimetric and (B) volumetric 15% CO,/85% N2 v/v breakthrough studies for
powdered UiO-66-NH; and mono UiO-66-NH: at 298K (Total flow = 2 cm® min™).
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Figure S36: Dry and 74% relative humidity 15% CO./85% N v/v breakthrough studies for (A)
monoHKUST-1 and (B) powdered HKUST-1 and at 298K (Total flow = 2 cm® min™).
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Figure S37: Dry and 74% relative humidity 15% CO./85% N2 v/v breakthrough studies for (A)
monoUi0-66 and (B) powdered UiO-66 and at 298K (Total flow = 2 cm® min™?).
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Figure S38: Dry and 74% relative humidity 15% CO/85% N v/v breakthrough studies for (A)
monoUi0-66-NH; and (B) powdered UiO-66-NH: and at 298K (Total flow = 2 cm® min).
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Figure S39: (A) Gravimetric and (B) volumetric 50% CO./50% CHa v/v breakthrough studies for
powdered HKUST-1 and monoHKUST-1 at 298K (Total flow = 2 cm® min').
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Figure S40: (A) Gravimetric and (B) volumetric 50% CO./50% CHa v/v breakthrough studies for
powdered UiO-66 and mono UiO-66 at 298K (Total flow = 2 cm® min™).
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Figure S41: (A) Gravimetric and (B) volumetric 50% CO./50% CHa v/v breakthrough studies for
powdered UiO-66-NH; and mono UiO-66-NH: at 298K (Total flow = 2 cm® min™).
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Cyclability Testing
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Figure S42: Cyclability of monoMOFs in 50% CO2/50% CHg v/v breakthrough studies, regeneration
at 120 °C.
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