Peptide Lipidation in Lysophospholipid Micelles and Lysophospholipid-Enriched **Membranes**

Vian S Esmaeil,^{1,2} Hannah M Britt,^{1,3} Jackie A Mosely⁴ and John M Sanderson¹

Chemistry Department, Durham University, Durham, DH1 3LE, UK
Current address: Chemistry Department, Soran University, Kurdistan Region, Iraq

Current address: Institute of Structural & Molecular Biology, University College London, Gower Street, London, WC1E 6BT
National Horizons Centre, School of Health & Life Sciences, Teesside University, Darlington DL1 1HG

Supporting Information: Contents

Chromatograms and Mass Spectra

1. Melittin + 1 Acyl Group (Fig. S1)	2
2. Melittin + 2 Acyl Groups (Fig. S2)	3
3. Melittin + 3 Acyl Groups (Fig. S3, S4)	4
4. Double Acylated (2 × Palmitoyl) Melittin (Fig. S5-S8)	6
5. Doubly Acylated (2 × OleovI) Melittin (Fig. S9-S12)	10
6. Doubly Acylated (1 × Oleoyl + 1 × Palmitoyl) Melittin (Fig. S13-S19)	14
Other Figures	
Fig. S20. EICs for palmitoyl and oleoyl melittin (Fig. S20)	21
Fig. S21. LC-MS analyses of OPC, and DPPC + melittin (Fig. S21)	22
Fig. S22. CMC measurements for palmitoyl and oleoyl melittin (Fig. S22)	23
Tables	
Tables S1-S2. Melittin + OPC (S1) or PPC (S2)	24
Tables S3-S4. Melittin + PPC/DOPC (S3) or OPC/DPPC (S4)	25
Tables S5-S11. Fragmentation of double palmitoylated melittin	27
Tables S12-S18. Fragmentation of double oleoylated melittin	31
Tables S19-S32. Fragmentation of 1×oleoyl, 1×palmitoyl melittin	34
References	45

1. Melittin + 1 Acyl Group

Figure S1. Mass spectra for melittin modified with a single acyl group. All were obtained from analyses of melittin incubated with mixtures of lysolipid/lipid, 1:1 (Fig. 3, main article; RT = 7.9–9.8 min). (B) and (D) are deconvolved from (A) and (C) respectively. (A) and (B): melittin + 50:50 PPC:DOPC. Assignments are in Table S3. (C) and (D): melittin + 50:50 OPC:DPPC. Assignments are in Table S4. Ions labeled Syn-M_P and Syn-M_O correspond respectively to the addition of a single palmitoyl or oleoyl group. Fragment ions (*b* and *y*) modified with an acyl group are labelled with a P or O subscript according to the identity of the acyl group.

2. Melittin + 2 Acyl Groups

Figure S2. Mass spectra for melittin modified with 2 acyl groups. All were obtained following incubation at 37 °C over 168 h using the LC-MS conditions in Fig. 2 (main article). (B) and (D) are deconvolved from (A) and (C) respectively. (A) and (B): melittin + 50:50 PPC:DOPC, RT = 9.5-11.8 min. Assignments are in Table S3. (C) and (D): melittin + 50:50 OPC:DPPC, RT = 9.6-11.9 min. Assignments are in Table S4. Ions labeled Syn-M_{P+P}, Syn-M_{P+O} and Syn-M_{O+O} correspond respectively to the double addition of acyl groups (2 palmitoyl, 1 oleoyl + 1 palmitoyl or 2 oleoyl respectively). Fragment ions (*b* and *y*) modified with an acyl group are labelled with a P or O subscripts according to the identity of the acyl group.

3. Melittin + 3 Acyl Groups

Figure S3. Mass spectra for melittin modified with 3 acyl groups following incubation with 50:50 PPC:DOPC at 37 °C over 168 h using the LC-MS conditions in Fig. 2 (main article), RT = 17–19 min. (A) mass spectrum over different charge states. The spectrum includes some ions with 2 acyl groups that were formed by in-source fragmentation of melittin + 3 acyl groups. Syn-M_{P+P+P}, Syn-M_{O+P+P}, Syn-M_{O+O+P} and Syn-M_{O+O+O} correspond respectively to the triple addition of acyl groups (3 palmitoyl, 1 oleoyl + 2 palmitoyl, 2 oleoyl + 1 palmitoyl, or 3 oleoyl respectively). Other peaks are labelled as per Fig. S2. Assignments are in Table S3.

Figure S4. Mass spectra for melittin modified with 3 acyl groups following incubation with 50:50 OPC:DPPC at 37 °C over 168 h using the LC-MS conditions in Fig. 2 (main article), RT = 17–19 min. (A) mass spectrum over different charge states. The spectrum includes some ions with 2 acyl groups that were formed by in-source fragmentation of melittin + 3 acyl groups. Syn-M_{P+P+P}, Syn-M_{O+P+P}, Syn-M_{O+O+P} and Syn-M_{O+O+O} correspond respectively to the triple addition of acyl groups (3 palmitoyl, 1 oleoyl + 2 palmitoyl, 2 oleoyl + 1 palmitoyl, or 3 oleoyl respectively). Other peaks are labelled as per Fig. S2. Assignments are in Table S4.

4. Double Acylated (2 × Palmitoyl) Melittin

в

H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 9.1 min, S18 and K21
H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 9.4 min, K21 and K23
H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 9.4 min, N-Term and K21
H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 10.1 min, K7 and K21
H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 10.6 min, N-Term and K23
H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 10.9 min, N-Term and R22
H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2	RT 11.2 min, N-Term and R24

Fig. S5. **A**. TIC from CID fragmentation of melittin modified by two palmitoyl groups at m/z 832 (z = 4) on ESI-LTQ-MS (LTQFT). Modified melittin was prepared by incubation of synthetic melittin with 50:50 PPC:DOPC over 168 h at 37 °C. **B**. Sequence ladders summarising *y*-type (green) and *b*-type (magenta) ions observed following fragmentation of double palmitoylated precursor ions of m/z 832 (z = 4) by CID (LTQ). Acylation sites are highlighted in blue. Full details are provided in Figs. S6-S8 and Tables S5-S11.

Fig. S6. LC-MS² spectra of the precursor ion at *m/z* 832 for $[M_{P+P} + 4H]^{4+}$ at 9.1 min (A) and 9.4 min (B and C; Fig. S5). The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 621.4, $[(b13 + H_2O) + 2H]^{2+}$; *m/z* 541.8, $[(y4 - NH_3) + H]^+$; *m/z* 666.0, $[(b12_P - H_2O) + 2H]^{2+}$; *m/z* 1330.7, $[(b12_P - H_2O) + H]^+$; *m/z* 1443.7, $[(b13_P - H_2O) + H]^+$. Data are tabulated in Tables S5-S7.

Fig. S7. LC-MS² spectra of the precursor ion at *m/z* 832 for $[M_{P+P} + 4H]^{4+}$ at 10.6 min (**A**) and 10.1 min (**B** and C; Fig. S5). The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 621.4, $[(b13 + H_2O) + 2H]^{2+}$; *m/z* 271.2, $[(y4 - NH_3) + 2H]^{2+}$; *m/z* 666.0, $[(b12_P - H_2O) + 2H]^{2+}$; *m/z* 1330.6, $[(b12_P - H_2O) + H]^+$; *m/z* 1443.7, $[(b13_P - H_2O) + H]^+$. Data are tabulated in Tables S8 and S9.

Fig. S8. LC-MS² spectra of the precursor ion at *m/z* 832 for $[M_{P+P} + 4H]^{4+}$ at 10.9 min (**A**) and 11.2 min (**B** and C; Fig. S5). The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 390.5, $[(y4 - NH_3) + 2H]^{2+}$; *m/z* 665.9, $[(b12_P - H_2O) + 2H]^{2+}$; *m/z* 1330.7, $[(b12_P - H_2O) + H]^+$; *m/z* 1443.8, $[(b13_P - H_2O) + H]^+$. Data are tabulated in Tables S10 and S11.

5. Doubly Acylated (2 × Oleoyl) Melittin

В H-GIGAVL G Q-NH2 RT 9.2 min, S18 and K21 H-GIGAVL TG L RT 9.6 min, K21 and K23 Q-NH-H-GIGAV G RT 9.6 min, N-Term and K21 Q-NH, H-GIGAV G RT 10.2 min, K7 and K21 R Q Q-NH2 H-GIGA G RT 10.6 min, N-Term and K23 R Q Q-NH2 H-GIGA G RT 10.9 min, N-Term and R22 IK Q-NH, HGIGAVLKVLTTGL RT 11.2 min, N-Term and R24 WIKRKRQ Q-NH, Ρ S

Fig. S9. **A**. TIC from CID fragmentation of melittin modified by two oleoyl groups at m/z 845 (z = 4) on ESI-LTQ-MS (LTQFT). Modified melittin was prepared by incubation of synthetic melittin with 50:50 PPC:DOPC over 168 h at 37 °C. **B**. Sequence ladders summarising *y*-type (green) and *b*-type (magenta) ions observed following fragmentation of double oleoylated precursor ions of m/z 845 (z = 4) by CID (LTQ). Acylation sites are highlighted in red. Full details are provided in Figs. S10-S12 and Tables S12-S18.

Fig. S10. LC-MS² spectra of the precursor ion at m/z 845 for $[M_{O+O} + 4H]^{4+}$ at 9.2 min (**A**) and 9.6 min (**B** and **C**; Fig. S9). The *y*-type and *b*-type ions are shown on each spectrum. The peak labelled with an asterisk in A represents: m/z 1066.9, $[(y13_{O+O} + H_2O) - H_2O + 2H]^{2+}$. Data are tabulated in Tables S12 to S14.

Fig. S11. LC-MS² spectra of the precursor ion at *m/z* 845 for $[M_{O+O} + 4H]^{4+}$ at 10.2 min (**A**) and 10.6 min (**B** and **C**; Fig. S9). The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 271.2, $[(y4 - NH_3) + 2H]^{2+}$; *m/z* 806.1, $[(y4_O - NH_3) + H]^+$; *m/z* 754.3, $[(b13_O + H_2O) + 2H]^{2+}$; *m/z* 993.9, $[(b18_O + H_2O) + H]^+$; *m/z* 1069.1, $[(y16_O - H_2O) + 2H]^{2+}$. Data are tabulated in Tables S15 and S16.

Fig. S12. LC-MS² spectra of the precursor ion at m/z 845 for $[M_{O+O} + 4H]^{4+}$ at 10.9 min (**A**) and 11.2 min (**B** and **C**; Fig. S9). The *y*-type and *b*-type ions are shown on each spectrum. Data are tabulated in Tables S17 and S18.

6. Doubly Acylated (1 × Oleoyl + 1 × Palmitoyl) Melittin

В

HGIGAVLKVLTTGLPALISWIKRKROONH,

RT 9.5 min, K21 and K23

но I GAVL KVLTTGL PALLIS WIK RK R Q Q NH RT 9.5 min, K7 and K21

HGIGAVLKVLTTGLPALISWIKRKROQNH,

RT 10.2 min, N-Term and R22

HGIGAVLKVLTTGLPALISWIKRKRO ONH

RT 10.6 min, N-Term and R24

H-GIGAVLKVLTTGLPALISWIKRKROO-NH

RT 10.9 min, N-Term and R24

HGIGAVLKVLTTGLPALISWIKRKRQ ONH

RT 11.2 min, N-Term and R24

но I G AVL K V L T T G L P A L I S W I K R K R O O-NH, RT 9.1 min, S18 and K21

HGIGAVILKVLTTGLPALISWIKRKROONH

RT 9.5 min, N-Term and K21

HGIGAVLKVLTTGLPALISWIKRKROOMH

HGIGAVLKVLTTGLPALISWIKRKROQNH

RT 10.2 min, N-Term and R24

HGIGAVLKVLTTGLPALISWIKRKRQQ.NH,

RT 10.6 min, N-Term and R24

HOIGAVLKVLTTGLPALISWIKRKROQNH,

RT 10.9 min, N-Term and R24

HGIGAVLKVLTTGLPALISWIKRKRQ ONH

RT 11.2 min, N-Term and R24

Fig. S13. **A**. TIC from CID fragmentation of melittin modified by one palmitoyl and one oleoyl group at m/z 838 (z = 4) on ESI-LTQ-MS (LTQFT). Modified melittin was prepared by incubation of synthetic melittin with 50:50 PPC:DOPC over 168 h at 37 °C. **B**. Sequence ladders summarising *y*-type (green) and *b*-type (magenta) ions observed following fragmentation of double acylated precursor ions of m/z 838 (z = 4) by CID (LTQ). Oleoylation sites are highlighted in red (oleoyl) or blue (palmitoyl). Full details are provided in Figs. S14-S19 and Tables S19-S32.

Fig. S14. LC-MS² spectra of the precursor ion at m/z 838 for $[M_{P+O} + 4H]^{4+}$ at 9.1 min (Fig. S13). (**A**) corresponds to oleoylation at S18 and palmitoylation at K21. (**B**) corresponds to oleoylation at K21 and palmitoylation at S18. The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: m/z 621.4, [(b13 + H₂O) + 2H]²⁺; m/z 1374.6, [(b15 – NH₃) + H]⁺. Data are tabulated in Tables S19 and S20.

Fig. S15. LC-MS² spectra of the precursor ion at m/z 838 for $[M_{P+O} + 4H]^{4+}$ at 9.5 min (Fig. S13). (**A**) corresponds to oleoylation at K21 and palmitoylation at K23. (**B**) corresponds to oleoylation at K23 and palmitoylation at K21. The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: m/z 621.5, [(b13 + H₂O) + 2H]²⁺; m/z 1374.6, [(b15 – NH₃) + H]⁺. Data are tabulated in Tables S21 and S22.

Fig. S16. LC-MS² spectra of the precursor ion at *m/z* 838 for $[M_{P+O} + 4H]^{4+}$ at 10.2 min (Fig. S13). (**A**) corresponds to oleoylation at K7 and palmitoylation at K21. (**B**) corresponds to oleoylation at K7 and palmitoylation at K21. (**B**) corresponds to oleoylation at K21 and palmitoylation at K7. The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 1198.9, [(b10₀ – H₂O) + H]⁺; *m/z* 1356.6, [(b12₀ – H₂O) + H]⁺; *m/z* 678.1, [(b12₀ – H₂O) + 2H]²⁺; *m/z* 1470.1, [(b13₀ – H₂O) + H]⁺; *m/z* 783.2, [(b14₀ – H₂O) + H]²⁺; *m/z* 1273.7, [(b11_P – H₂O) + H]⁺; *m/z* 1330.8, [(b12_P – H₂O) + H]⁺; *m/z* 665.9, [(b12_P – H₂O) + 2H]²⁺; *m/z* 1063.5, [(y6₀ – NH₃) + H]⁺. Data are tabulated in Tables S25 and S26.

Fig. S17. LC-MS² spectra of the precursor ion at *m/z* 838 for $[M_{P+O} + 4H]^{4+}$ at 10.6 min (Fig. S13). (**A**) corresponds to oleoylation at the *N*-terminus and palmitoylation at K23. (**B**) corresponds to oleoylation at K23 and palmitoylation at the *N*-terminus. The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 679.2, $[(b5_O + H_2O) + H]^+$; *m/z* 1470.1, $[(b13_O - H_2O) + H]^+$; *m/z* 1330.8, $[(b12_P - H_2O) + H]^+$; *m/z* 666.1, $[(b12_P - H_2O) + 2H]^{2+}$; *m/z* 1443.7, $[(b13_P - H_2O) + H]^+$; *m/z* 779.7, $[(y4_P - NH_3) + H]^+$. Data are tabulated in Tables S27 and S28.

Fig. S18. LC-MS² spectra of the precursor ion at *m/z* 838 for $[M_{P+O} + 4H]^{4+}$ at 10.9 min (Fig. S13). (**A**) corresponds to oleoylation at the *N*-terminus and palmitoylation at R22. (**B**) corresponds to oleoylation at R22 and palmitoylation at the *N*-terminus. The *y*-type and *b*-type ions are shown on each spectrum. The peaks labelled with an asterisk represent: *m/z* 679.0, $[(b5_O + H_2O) + H]^+$; *m/z* 1470.2, $[(b13_O - H_2O) + H]^+$; *m/z* 1330.8, $[(b12_P - H_2O) + H]^+$; *m/z* 666.0, $[(b12_P - H_2O) + 2H]^{2+}$; *m/z* 541.3, $[(y4 - NH_3) + H]^+$. Data are tabulated in Tables S29 and S30.

Fig. S19. LC-MS² spectra of the precursor ion at *m/z* 838 for $[M_{P+O} + 4H]^{4+}$ at 11.2 min (Fig. S13). (**A**) corresponds to oleoylation at the *N*-terminus and palmitoylation at R24. (**B**) corresponds to oleoylation at R24 and palmitoylation at the *N*-terminus. The *y*-type and *b*-type ions are shown on each spectrum. The labelled peak with the asterisk represent: *m/z* 679.1, $[(b5_O + H_2O) + H]^+$; *m/z* 1469.8, $[(b13_P - H_2O) + H]^+$; *m/z* 1330.8, $[(b12_P - H_2O) + H]^+$; *m/z* 665.8, $[(b12_P - H_2O) + 2H]^{2+}$; *m/z* 779.5, $[(y4_P - NH_3) + H]^+$. Data are tabulated in Tables S31 and S32.

Supporting Information: Other Figures

Fig. S20. EICs for *m*/*z* 772.00 and 778.51, corresponding to palmitoyl and oleoyl melittin respectively (*z* = 4), from LC-MS analyses of synthetic melittin incubated for 48 h with mixtures of lysolipid and lipid at 37 °C in buffer (10 mM NaHCO₃/90 mM NaCl) at pH 7.4. a) to e) DPPC + OPC; f) to j) DOPC + PPC. The initial molar ratio of lysolipid to lipid is indicated on each trace. Ratios indicated with a dagger (†) are bilayer ± lysolipid; those indicated with an asterisk (*) are mixed bilayer/detergent systems; those indicated with a dagger (‡) are micelles (on the basis of literature precedents).¹⁻⁴ Peak annotations are identified in Figs. 2 and 3 in the main article.

Fig. S21. LC-MS analyses for authentic OPC, and mixtures of DPPC liposomes with melittin. A is an authentic sample of OPC; **B** is a blank run; **C** is 3 h following the addition of melittin to DPPC; **D** is 24 h after the addition of DPPC to melittin. Both **C** and **D** show the presence of **OPC** at levels higher than the blank run, suggesting a small amount of OPC contamination in the sample.

Fig. S22. Rhodamine 6G emission at 550 nm in the presence of increasing concentrations of lipidated melittin (1–100 μ M) in water. **A**. *N*-palmitoyl melittin (solid red); K23-palmitoyl melittin (dashed orange). The vertical line denotes the CMC of K23-palmitoyl melittin at approximately 5 μ m. **B**. *N*-oleoyl melittin (solid blue); K23-oleoyl melittin (dashed green). The vertical line indicates the CMC of K23-oleoyl melittin at approximately 7.5 μ m.

Supporting Information: Tables

	¹ H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH ₂ ²⁶											
<i>m/z</i> Theor [‡]	m∕z Meas [‡]	z	RT (min)	Error (ppm)	Peak Area / 10 ⁵ (a.u. min) [§]	Assignment						
1037.3404	1037.3416	3	8.6	1.16	121 ± 79	[1-26] + 1 × (C18:1) / Single Oleoylation						
778.2572	778.2581	4	8.6	1.16	422 ± 268	[1-26] + 1 × (C18:1) / Single Oleoylation						
622.8072	622.8076	5	8.6	0.64	355 ± 229	[1-26] + 1 × (C18:1) / Single Oleoylation						
1125.4222	1125.4241	3	11.1	1.69	93 ± 76	[1-26] + 2 × (C18:1) / Double Oleoylation						
844.3185	844.3196	4	11.1	1.30	432 ± 346	[1-26] + 2 × (C18:1) / Double Oleoylation						
675.6562	675.6574	5	11.2	1.78	46 ± 35	[1-26] + 2 × (C18:1) / Double Oleoylation						
1125.4222	1125.4231	3	17.8	0.80	0.7 ± 0.2	[1-26] + 2 × (C18:1) / Labile Triple Oleoylation						
844.3185	844.3192	4	17.8	0.83	6 ± 2	[1-26] + 2 × (C18:1) / Labile Triple Oleoylation						
675.6562	675.6555	5	17.8	-1.04	0.4 ± 0.1	[1-26] + 2 × (C18:1) / Labile Triple Oleoylation						
1213.5040	1213.5055	3	18.2	1.24	0.5 ± 0.3	[1-26] + 3 × (C18:1) / Triple Oleoylation						
910.3798	910.3790	4	18.2	-0.90	1.5 ± 0.5	[1-26] + 3 × (C18:1) / Triple Oleoylation						

Table S1. Oleoylated melittin species observed in a mixture of melittin and OPC incubated at 37 °C over 168 h.

[‡] Both theoretical (Theor) and measured (Meas) *m/z* values are for the monoisotopic peak. Theoretical masses were obtained from mMass software (V5.5).

[§] Errors are reported as the standard error of the mean (SEM) of the peak area (A), *n*=3.

Table S2. Palmitoylated	melittin species observed in a mixture of melittin and	d PPC
incubated at 37 °C over	168 h.	

	¹ H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH ²⁶										
<i>m/z</i> Theor [‡]	<i>m/z</i> Meas [‡]	z	RT (min)	Error (ppm)	Peak Area / 10⁵ (a.u. min) [§]	Assignment					
1028.6686	1028.6675	3	8.8	-1.07	43 ± 42	[1-26] + 1 × (C16:0) / Single Palmitoylation					
771.7532	771.7540	4	8.9	1.04	102 ± 96	[1-26] + 1 × (C16:0) / Single Palmitoylation					
617.6040	617.6046	5	8.9	0.97	59 ± 55	[1-26] + 1 × (C16:0) /Single Palmitoylation					
1108.0784	1108.0837	3	11.3	4.78	0.1 ± 0.04	[1-26] + 2 × (C16:0) / Double Palmitoylation					
831.3107	831.3134	4	11.2	3.25	0.7 ± 0.1	[1-26] + 2 × (C16:0) / Double Palmitoylation					
1108.0784	1108.0756	3	17.7	-2.52	0.1 ± 0.1	[1-26] + 2 × (C16:0) / Labile Triple Palmitoylation					
831.3107	831.3109	4	17.7	0.24	1 ± 0.7	[1-26] + 2 × (C16:0) / Labile Triple Palmitoylation					

[‡] Both theoretical and measured *m/z* values are for monoisotopic peak. Theoretical mass obtained from mMass software (V5.5).

[§] Errors are reported as SEM of peak area (n=2).

¹ H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH ₂ ²⁶										
<i>m/z</i> Theor [‡]	<i>m∕z</i> Meas [‡]	z	RT (min)	Error (ppm)	Peak Area / 10⁴ (a.u. min) [§]	Assignment				
1037.3404	1037.3423	3	8.9	1.83	55 ± 16	[1-26] + 1 × (C18:1) / Single Oleoylation				
778.2572	778.2580	4	8.9	1.03	266 ± 57	[1-26] + 1 × (C18:1) / Single Oleoylation				
622.8072	622.8076	5	8.9	0.64	137 ± 121	[1-26] + 1 × (C18:1) / Single Oleoylation				
1028.6686	1028.6689	3	8.5	0.29	63 ± 22	[1-26] + 1 × (C16:0) / Single Palmitoylation				
771.7532	771.7532	4	8.5	0.00	260 ± 42	[1-26] + 1 × (C16:0) / Single Palmitoylation				
617.6040	617.6048	5	8.5	1.30	238 ± 56	[1-26] + 1 × (C16:0) /Single Palmitoylation				
1125.4222	1125.4205	3	11.0	-1.51	31 ± 15	[1-26] + 2 × (C18:1) / Double Oleoylation				
844.3185	844.3196	4	11.0	1.30	129 ± 37	[1-26] + 2 × (C18:1) / Double Oleoylation				
675.6562	675.6562	5	10.9	0.00	21 ± 6	[1-26] + 2 × (C18:1) / Double Oleoylation				
1108.0784	1108.0811	3	11.0	2.44	46 ± 17	[1-26] + 2 × (C16:0) / Double Palmitoylation				
831.3107	831.3117	4	10.9	1.20	168 ± 48	[1-26] + 2 × (C16:0) / Double Palmitoylation				
665.2500	665.2509	5	10.9	1.35	38 ± 8	[1-26] + 2 × (C16:0) / Double Palmitoylation				
1116.7503	1116.7489	3	11.0	-1.25	78 ± 29	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Palmitoylation + Oleoylation				
837.8146	837.8157	4	10.9	1.31	273 ± 62	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Palmitoylation + Oleoylation				
670.4531	670.4540	5	10.8	1.34	67 ± 19	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Palmitoylation + Oleoylation				
1125.4222	1125.4242	3	17.8	1.78	0.3 ± 0.2	[1-26] + 2 × (C18:1) + / Labile Triple Oleoylation				
844.3185	844.3190	4	17.8	0.59	5 ± 4	[1-26] + 2 × (C18:1) + / Labile Triple Oleoylation				
1108.0784	1108.0554	3	17.7	- 20.76	1 ± 0.4	[1-26] + 2 × (C16:0) + / Labile Triple Palmitoylation				
831.3107	831.3108	4	17.8	0.12	6 ± 5	[1-26] + 2 × (C16:0) + / Labile Triple Palmitoylation				
1116.7503	1116.7476	3	17.7	-2.42	1.5 ± 1	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Labile (Palmitoylation + Oleoylation)				
837.8146	837.8159	4	17.7	1.55	12 ± 9	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Labile (Palmitoylation + Oleoylation)				
670.4531	670.4553	5	17.8	3.28	0.5 ± 0.2	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Labile (Palmitoylation + Oleoylation)				
1213.5040	1213.5038	3	18.18	-0.16	1 ± 1	[1-26] + 3 × (C18:1) / Triple Oleoylation				
910.3798	910.3758	4	18.09	-4.39	2 ± 2	[1-26] + 3 × (C18:1) / Triple Oleoylation				
1187.4883	1187.4899	3	18.15	1.35	1 ± 1	[1-26] + 3 × (C16:0) / Triple Palmitoylation				
890.8681	890.8683	4	18.21	0.22	4 ± 3	[1-26] + 3 × (C16:0) / Triple Palmitoylation				
1204.8321	1204.8300	3	18.18	-1.74	2.5 ± 2	[1-26] + 2 × (C18:1) + 1 × (C16:0) / Double Oleoylation + Single Palmitoylation				
903.8759	903.8759	4	18.12	0.00	8 ± 7.5	[1-26] + 2 × (C18:1) + 1 × (C16:0) / Double Oleoylation + Single Palmitoylation				
1196.1602	1196.1633	3	18.18	2.59	2 ± 2	[1-26] + 2 × (C16:0) + 1 × (C18:1) / Double Palmitoylation + Single Oleoylation				
897.3720	897.3736	4	18.21	1.78	10 ± 9	[1-26] + 2 × (C16:0) + 1 × (C18:1) / Double Palmitovlation + Single Oleovlation				

Table S3. Acylated species observed in a mixture of melittin with PPC:DOPC (1:1) after incubation at 37 °C for 168 h.

[‡] Both theoretical and measured *m*/*z* values are for the monoisotopic peak. Theoretical mass obtained from mMass software (V5.5).

[§] Errors are reported as SEM of peak area (n=2).

Table	S4.	Acylated	species	observed	in	а	mixture	of	melittin	with	OPC:DPPC	(1:1)	after
incubat	tion a	at 37 °C fo	r 168 h.										

¹ H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH ₂ ²⁶										
<i>m/z</i> Theor [‡]	m/z Meas [‡]	z	RT (min)	Error (ppm)	Peak Area / 10⁴ (a.u. min) [§]	Assignment				
1037.3404	1037.3405	3	8.6	0.09	144 ± 67	[1-26] + 1 × (C18:1) / Single Oleoylation				
778.2572	778.2585	4	8.6	1.67	660 ± 307	[1-26] + 1 × (C18:1) / Single Oleoylation				
622.8072	622.8077	5	8.6	0.80	479 ± 159	[1-26] + 1 × (C18:1) / Single Oleoylation				
1028.6686	1028.6687	3	8.5	0.10	85 ± 33	[1-26] + 1 × (C16:0) / Single Palmitoylation				
771.7532	771.7542	4	8.5	1.30	364 ± 102	[1-26] + 1 × (C16:0) / Single Palmitoylation				
617.6040	617.6046	5	8.5	0.97	270 ± 48	[1-26] + 1 × (C16:0) /Single Palmitoylation				
1125.4222	1125.4232	3	11.0	0.89	24 ± 15	[1-26] + 2 × (C18:1) / Double Oleoylation				
844.3185	844.3193	4	10.9	0.95	282 ± 30	[1-26] + 2 × (C18:1) / Double Oleoylation				
675.6562	675.6549	5	10.9	-1.92	35 ± 19	[1-26] + 2 × (C18:1) / Double Oleoylation				
1108.0784	1108.0789	3	11.0	0.45	19 ± 9	[1-26] + 2 × (C16:0) / Double Palmitoylation				
831.3107	831.3115	4	10.9	0.96	88 ± 53	[1-26] + 2 × (C16:0) / Double Palmitoylation				
665.2500	665.2499	5	10.9	-0.15	12 ± 9.5	[1-26] + 2 × (C16:0) / Double Palmitoylation				
1116.7503	1116.7505	3	11.0	0.18	55 ± 16	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Palmitoylation + Oleoylation				
837.8146	837.8159	4	10.9	1.55	249 ± 114	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Palmitoylation + Oleoylation				
670.4531	670.4542	5	10.9	1.64	44 ± 29	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Palmitoylation + Oleoylation				
1125.4222	1125.4195	3	17.7	-2.40	1 ± 0.1	[1-26] + 2 × (C18:1) + / Labile Triple Oleoylation				
844.3185	844.3195	4	17.7	1.18	14 ± 0.1	[1-26] + 2 × (C18:1) + / Labile Triple Oleoylation				
831.3107	831.3134	4	17.7	3.25	4 ± 2	[1-26] + 2 × (C16:0) + / Labile Triple Palmitoylation				
1116.7503	1116.7491	3	17.7	-1.07	2 ± 1	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Labile (Palmitoylation + Oleoylation)				
837.8146	837.8154	4	17.7	0.95	15 ± 4	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Labile (Palmitoylation + Oleoylation)				
670.4531	670.4537	5	17.8	0.89	1 ± 0.2	[1-26] + 1 × (C16:0) + 1 × (C18:1)/ Labile (Palmitoylation + Oleoylation)				
1213.504	1213.5011	3	18.2	-2.39	3 ± 1	[1-26] + 3 × (C18:1) / Triple Oleoylation				
910.3798	910.3813	4	18.2	1.65	10 ± 3	[1-26] + 3 × (C18:1) / Triple Oleoylation				
1187.4883	1187.4921	3	18.2	3.20	0.6 ± 0.4	[1-26] + 3 × (C16:0) / Triple Palmitoylation				
890.8681	890.8680	4	18.1	-0.11	3 ± 2	[1-26] + 3 × (C16:0) / Triple Palmitoylation				
1204.8321	1204.8315	3	18.2	-0.50	6 ± 4	[1-26] + 2 × (C18:1) + 1 × (C16:0) / Double Oleoylation + Single Palmitoylation				
903.8759	903.8751	4	18.2	-0.89	17 ± 13.5	[1-26] + 2 × (C18:1) + 1 × (C16:0) / Double Oleoylation + Single Palmitoylation				
1196.1602	1196.1632	3	18.2	2.51	4 ± 3	[1-26] + 2 × (C16:0) + 1 × (C18:1) / Double Palmitoylation + Single Oleoylation				
897.3720	897.3710	4	18.2	-1.11	13 ± 10	[1-26] + 2 × (C16:0) + 1 × (C18:1) / Double Palmitoylation + Single Oleoylation				

[‡] Both theoretical and measured *m/z* values are monoisotopic. Theoretical mass obtained from mMass software (V5.5).

[§] Errors reported as the SEM of peak area (n=3).

Table S5. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at RT = 9.1 min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S6a.

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b4	299.1	1	H-GIGA.v	y19	1342.5	2	k.VLTTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b5	398.1	1	H-GIGAV.I	y18	1293.2	2	v.LTTGLPALI <mark>S</mark> WIKRKRQQ-NH₂
b6	511.4	1	H-GIGAVL.k	y17	1236.7	2	I.TTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b8	738.4	1	H-GIGAVLKV.I	y16	1186.1	2	t.TGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b9	851.5	1	H-GIGAVLKVL.t	y15	1135.5	2	t.GLPALI <mark>S</mark> WIKRKRQQ-NH₂
b10	953.0	1	H-GIGAVLKVLT.t	y14	1107.1	2	g.LPALI <mark>S</mark> WIKRKRQQ-NH₂
b12	1110.6	1	H-GIGAVLKVLTTG.I	y13	1050.5	2	I.PALISWIKRKRQQ-NH ₂
b13	1223.7	1	H-GIGAVLKVLTTGL.p	y12	1001.9	2	p.ALISWIKRKRQQ-NH ₂
				y10	910.3	2	I.ISWIKRKRQQ-NH2
				y9	853.6	2	i. S WIKRKRQQ-NH₂
b13 +H ₂ O	621.4	2	H-GIGAVLKVLTTGL.p	у7	598.1	2	w.IKRKRQQ-NH ₂
				y6	541.0	2	i. K RKRQQ-NH₂
				y5	357.7	2	k.RKRQQ-NH₂

[†] Palmitoylation sites within the amino acid sequence of the peptide are highlighted in **bold blue**.

Table S6. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at RT =	: 9.4
min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S6b.	

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b4	299.3	1	H-GIGA.v	y19	1342.9	2	k.VLTTGLPALISWI K RKRQQ-NH₂
b5	398.2	1	H-GIGAV.I	y18	1293.1	2	v.LTTGLPALISWIKRKRQQ-NH₂
b6	511.3	1	H-GIGAVL.k	y17	1236.7	2	I.TTGLPALISWIKRKRQQ-NH₂
b8	738.6	1	H-GIGAVLKV.I	y16	1186.1	2	t.TGLPALISWIKRKRQQ-NH₂
b9	851.6	1	H-GIGAVLKVL.t	y15	1135.5	2	t.GLPALISWIKRKRQQ-NH₂
b10	952.9	1	H-GIGAVLKVLT.t	y14	1106.8	2	g.LPALISWIKRKRQQ-NH₂
b12	1110.7	1	H-GIGAVLKVLTTG.I	y13	1050.2	2	I.PALISWIKRKRQQ-NH2
b13	1223.6	1	H-GIGAVLKVLTTGL.p	y12	1001.8	2	p.ALISWIKRKRQQ-NH ₂
				y11	966.2	2	a.LISWIKRKRQQ-NH ₂
				y10	910.0	2	I.ISWIKRKRQQ-NH2
b13 +H₂O	621.5	2	H-GIGAVLKVLTTGL.p	y9	853.6	2	i.SWI K RKRQQ-NH₂
_				y8	809.5	2	s.WIKRKRQQ-NH₂
				y6	659.4	2	i. KRK RQQ-NH ₂

Table S7. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at RT = 9.4 min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S6c.

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b3	466.2	1	H- <mark>G</mark> IG.a	y19	1223.6	2	k.VLTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b4	537.3	1	H- G IGA.v	y18	1174.0	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b5	636.2	1	H- <mark>G</mark> IGAV.I	y17	1117.5	2	I.TTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b6	749.2	1	H- <mark>G</mark> IGAVL.k	y16	1066.9	2	t.TGLPALISWI K RKRQQ-NH₂
b7	877.4	1	H- <mark>G</mark> IGAVLK.v	y15	1016.1	2	t.GLPALISWIKRKRQQ-NH ₂
b8	976.1	1	H- <mark>G</mark> IGAVLKV.I	y14	987.8	2	g.LPALISWIKRKRQQ-NH ₂
b9	1089.6	1	H- G IGAVLKVL.t	y13	931.1	2	I.PALISWI K RKRQQ-NH₂
b10	1190.9	1	H-GIGAVLKVLT.t	y12	883.0	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
b12	1348.6	1	H- <mark>G</mark> IGAVLKVLTTG.I	y11	847.3	2	a.LISWI <mark>K</mark> RKRQQ-NH₂
b12 - H₂O	1330.7	1	H- <mark>G</mark> IGAVLKVLTTG.I	y10	790.6	2	I.ISWIKRKRQQ-NH₂
b12 - H ₂ O	666.0	2	H- <mark>G</mark> IGAVLKVLTTG.I	y9	734.1	2	i.SWIKRKRQQ-NH₂
b13	1461.5	1	H- <mark>G</mark> IGAVLKVLTTGL.p	y6	1080.1	1	i. K RKRQQ-NH₂
b13 - H₂O	1443.7	1	H- <mark>G</mark> IGAVLKVLTTGL.p	y4	558.3	1	r.KRQQ-NH₂
b15	816.1	2	H- <mark>G</mark> IGAVLKVLTTGLPA.I		544.0	_	
b18	972.6	2	H-GIGAVLKVLTTGLPALIS.w	y4 – NH₃	541.8	1	r.nkuu-NH2

Table S8. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at RT = 10.1 min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S7b.

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b4	299.1	1	H-GIGA.v	y19	1223.7	2	k.VLTTGLPALISWIKRKRQQ-NH ₂
b5	398.2	1	H-GIGAV.I	y18	1173.9	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b6	511.3	1	H-GIGAVL.k	y17	1117.4	2	I.TTGLPALISWIKRKRQQ-NH2
b7	877.6	1	H-GIGAVL <mark>K</mark> .v	y16	1066.8	2	t.TGLPALISWIKRKRQQ-NH ₂
b8	976.5	1	H-GIGAVL <mark>K</mark> V.I	y15	1016.5	2	t.GLPALISWIKRKRQQ-NH ₂
b9	1089.7	1	H-GIGAVL <mark>K</mark> VL.t	y14	987.9	2	g.LPALISWIKRKRQQ-NH ₂
b10	1190.6	1	H-GIGAVL <mark>K</mark> VLT.t	y13	931.2	2	I.PALISWIKRKRQQ-NH2
b11	1291.6	1	H-GIGAVL <mark>K</mark> VLTT.g	y12	882.7	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
b12	1348.7	1	H-GIGAVL <mark>K</mark> VLTTG.I	y11	847.2	2	a.LISWIKRKRQQ-NH ₂
b12 – H ₂ O	1330.7	1	H-GIGAVL <mark>K</mark> VLTT G.I	y10	790.8	2	I.ISWIKRKRQQ-NH ₂
b12 – H₂O	666.0	2	H-GIGAVL <mark>K</mark> VLTT G.I	y9	734.0	2	i.SWIKRKRQQ-NH₂
b13	1461.8	1	H-GIGAVL <mark>K</mark> VLTTGL.p	y8	734.0	2	s.WIKRKRQQ-NH2
b13 – H ₂ O	1443.7	1	H-GIGAVL <mark>K</mark> VLTTGL.p	у7	597.2	2	w.IKRKRQQ-NH ₂
b15	816.2	2	H-GIGAVL <mark>K</mark> VLTTGLPA.I	у6	541.1	2	i. K RKRQQ-NH₂
b18	972.2	2	H-GIGAVLKVLTTGLPALIS.w	y4 - NH ₃	271.2	2	r.KRQQ-NH ₂

[†] Palmitoylation sites within the amino acid sequence of the peptide are highlighted in **bold blue**.

Table S9. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at RT = 1	10.6
min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S7a.	

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b3	466.2	1	H- G IG.a	y19	1223.6	2	k.VLTTGLPALISWIKRKRQQ-NH2
b4	537.2	1	H- G IGA.v	y18	1173.9	2	v.LTTGLPALISWIKRKRQQ-NH2
b5	636.2	1	H- G IGAV.I	y17	1117.5	2	I.TTGLPALISWIKRKRQQ-NH2
b6	749.3	1	H- G IGAVL.k	y16	1067.0	2	t.TGLPALISWIKRKRQQ-NH ₂
b7	877.3	1	H- G IGAVLK.v	y15	1016.5	2	t.GLPALISWIKRKRQQ-NH2
b8	976.7	1	H- G IGAVLKV.I	y14	987.9	2	g.LPALISWIKRKRQQ-NH ₂
b9	1089.6	1	H- G IGAVLKVL.t	y13	931.4	2	I.PALISWIKRKRQQ-NH2
b10	1190.6	1	H- G IGAVLKVLT.t	y12	882.7	2	p.ALISWIKR K RQQ-NH₂
b12	1348.6	1	H- G IGAVLKVLTTG.I	y11	847.4	2	a.LISWIKRKRQQ-NH ₂
b12 - H₂O	1330.6	1	H- G IGAVLKVLTTG.I	y10	790.6	2	I.ISWIKRKRQQ-NH₂
b12 - H ₂ O	666.0	2	H- G IGAVLKVLTTG.I	y9	734.2	2	i.SWIKR <mark>K</mark> RQQ-NH₂
b13	1461.4	1	H- G IGAVLKVLTTGL.p	y5	477.3	2	k.RKRQQ-NH ₂
b13 - H ₂ O	1443.7	1	H- G IGAVLKVLTTGL.p				
b15	816.1	2	H- G IGAVLKVLTTGLPA.I	y4	398.2	2	r. K RQQ-NH₂
b18	972.7	2	H- G IGAVLKVLTTGLPALIS.w				

Table S10. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at RT = 10.9 min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S8a.

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b3	466.2	1	H- G IG.a	y19	1223.7	2	k.VLTTGLPALISWIKRKRQQ-NH ₂
b4	537.2	1	H- G IGA.v	y18	1173.8	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b5	636.3	1	H- G IGAV.I	y17	1117.5	2	I.TTGLPALISWIKRKRQQ-NH2
b6	749.4	1	H- <mark>G</mark> IGAVL.k	y16	1067.1	2	t.TGLPALISWIKRKRQQ-NH ₂
b7	877.5	1	H- G IGAVLK.v	y15	1016.5	2	t.GLPALISWIKRKRQQ-NH ₂
b7	439.7	2	H- G IGAVLK.v	y14	987.9	2	g.LPALISWIK R KRQQ-NH₂
b8	976.6	1	H- G IGAVLKV.I	y13	931.5	2	I.PALISWIKRKRQQ-NH ₂
b9	1089.6	1	H- G IGAVLKVL.t	y12	882.9	2	p.ALISWIKRKRQQ-NH ₂
b10	1190.4	1	H-GIGAVLKVLT.t	y11	847.4	2	a.LISWIKRKRQQ-NH ₂
b12	1348.7	1	H- G IGAVLKVLTTG.I	y10	790.8	2	I.ISWIKRKRQQ-NH2
b12 - H ₂ O	1330.7	1	H- G IGAVLKVLTTG.I	у9	734.0	2	i.SWIK R KRQQ-NH₂
b12 - H ₂ O	665.9	2	H- G IGAVLKVLTTG.I				
b13	1461.8	1	H- G IGAVLKVLTTGL.p				
b13 - H ₂ O	1443.8	1	H- G IGAVLKVLTTGL.p	y5	477.1	2	k. R KRQQ-NH ₂
b15	815.9	2	H- G IGAVLKVLTTGLPA.I				
b18	972.4	2	H- G IGAVLKVLTTGLPALIS.w				

[†] Palmitoylation sites within the amino acid sequence of the peptide are highlighted in **bold blue**.

Table S11. lons produced by fragmenting double-palmitoylated melittin at m/z 832 (z = 4) at	: RT =
11.2 min of the EIC (see Fig. 3 and Fig. S5), LTQFT. Data are presented graphically in Fig. S8b.	

b-lons	m/z	z	Sequence Ladder [†]	y-lons	m/z	z	Sequence Ladder [†]
b3	466.2	1	H- <mark>G</mark> IG.a	y19	1223.4	2	k.VLTTGLPALISWIKRKRQQ-NH ₂
b4	537.1	1	H- G IGA.v	y18	1173.8	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b5	636.3	1	H- G IGAV.I	y17	1117.4	2	I.TTGLPALISWIKRKRQQ-NH2
b6	749.4	1	H- <mark>G</mark> IGAVL.k	y16	1067.4	2	t.TGLPALISWIKRKRQQ-NH ₂
b7	877.6	1	H- <mark>G</mark> IGAVLK.v	y15	1016.5	2	t.GLPALISWIKRK <mark>R</mark> QQ-NH₂
b7	439.4	2	H- G IGAVLK.v	y14	987.9	2	g.LPALISWIKRK <mark>R</mark> QQ-NH₂
b8	976.6	1	H- G IGAVLKV.I	y13	931.5	2	I.PALISWIKRKRQQ-NH2
b9	1089.7	1	H- G IGAVLKVL.t	y12	882.7	2	p.ALISWIKRKRQQ-NH ₂
b10	1190.7	1	H- G IGAVLKVLT.t	y11	847.5	2	a.LISWIKRKRQQ-NH ₂
b12	1348.7	1	H- <mark>G</mark> IGAVLKVLTTG.I	y10	790.3	2	I.ISWIKRKRQQ-NH ₂
b12 - H ₂ O	1330.8	1	H- <mark>G</mark> IGAVLKVLTTG.I	y9	733.3	2	i.SWIKRK <mark>R</mark> QQ-NH₂
b12 - H ₂ O	665.9	2	H- <mark>G</mark> IGAVLKVLTTG.I	y8 - NH₃	681.4	2	s.WIKRQQ-NH ₂
b13	1461.8	1	H- G IGAVLKVLTTGL.p	y5	477.1	2	k.RK R QQ-NH₂
b13 - H ₂ O	1443.8	1	H- G IGAVLKVLTTGL.p	y5 - NH₃	468.5	2	k.RK <mark>R</mark> QQ-NH₂
b15	816.3	2	H- G IGAVLKVLTTGLPA.I		300 5	2	
b18	972.3	2	H- G IGAVLKVLTTGLPALIS.w	уч - INГ1 ₃	390.3	2	

Table S12. lons produced by fragmenting double-oleoylated melittin at m/z 845 (z = 4) at RT = 9.2 min of the EIC (see Fig. 2, Fig. 3 and Fig. S9), LTQFT. Data are presented graphically in Fig. S10a.

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b4	299.1	1	H-GIGA.v	y19	1368.6	2	k.VLTTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b5	398.2	1	H-GIGAV.I	y18	1318.6	2	v.LTTGLPALI <mark>S</mark> WI <mark>K</mark> RKRQQ-NH₂
b6	511.3	1	H-GIGAVL.k	y17	1262.6	2	I.TTGLPALI <mark>S</mark> WIKRKRQQ-NH2
b12	1348.7	1	H-GIGAVLKVLTTG.I	y16	1211.8	2	t.TGLPALI <mark>S</mark> WIKRKRQQ-NH₂
				y15	1161.6	2	t.GLPALI <mark>S</mark> WI <mark>K</mark> RKRQQ-NH₂
				y14	1132.0	2	g.LPALI <mark>S</mark> WI <mark>K</mark> RKRQQ-NH₂
				y13	1076.1	2	I.PALI <mark>S</mark> WIKRKRQQ-NH₂
				y13 - H₂O	1066.9	2	I.PALI <mark>S</mark> WIKRKRQQ-NH ₂
b13	1/61 8	1		y12	1027.4	2	p.ALI <mark>S</mark> WI <mark>K</mark> RKRQQ-NH₂
010	1401.0	1	H-OIOAVERVETTOE.p	y11	992.4	2	a.LI <mark>S</mark> WIKRKRQQ-NH₂
				y10	935.6	2	I.I <mark>S</mark> WIKRKRQQ-NH ₂
				у7	610.3	2	w.IKRKRQQ-NH ₂
				у6	554.2	2	i. K RKRQQ-NH₂
				у5	714.4	1	k.RKRQQ-NH₂

[‡] Oleoylation sites within the amino acid sequence of the peptide are highlighted in **bold red**.

Table S13.	lons produced	by fragmenting	double-oleoylated	melittin at n	n/z 845 (z = 4	4) at RT = 9.6
min of the E	IC (see Fig. 2, Fi	g. 3 and Fig. S9)	, LTQFT. Data are p	presented gr	aphically in F	ig. S10b.

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b4	299.1	1	H-GIGA.v	y19	1368.7	2	k.VLTTGLPALISWIKRKRQQ-NH2
b5	398.2	1	H-GIGAV.I	y18	1318.9	2	v.LTTGLPALISWIKRKRQQ-NH2
b6	511.3	1	H-GIGAVL.k	y17	1262.7	2	I.TTGLPALISWIKRKRQQ-NH2
b10	952.5	1	H-GIGAVLKVLT.t	y16	1211.9	2	t.TGLPALISWIKRKRQQ-NH2
b12	1110.6	1	H-GIGAVLKVLTTG.I	y15	1161.5	2	t.GLPALISWI K RKRQQ-NH₂
				y14	1132.8	2	g.LPALISWI <mark>K</mark> RKRQQ-NH₂
				y13	1076.6	2	I.PALISWIKRKRQQ-NH2
				y13-H₂O	1067.6	2	I.PALISWIKRKRQQ-NH2
				y12	1027.5	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
b13	1223.6	1	H-GIGAVLKVLTTGL.p	y11	992.8	2	a.LISWI <mark>KRK</mark> RQQ-NH ₂
				y10	935.9	2	I.ISWIKRKRQQ-NH ₂
				y8	835.8	2	s.WI <mark>K</mark> RKRQQ-NH₂
				у7	742.2	2	w.IKRKRQQ-NH ₂
				y5	490.3	2	k.RKRQQ-NH ₂

Table S14. lons produced by fragmenting double-oleoylated melittin at m/z 845 (z = 4) at RT = 9.6 min of the EIC (see Fig. 2, Fig. 3 and Fig. S9), LTQFT. Data are presented graphically in Fig. S10c.

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b3	492.3	1	H- <mark>G</mark> IG.a	y21	1356.6	2	v.LKVLTTGLPALISWIKRKRQQ-NH ₂
b4	563.2	1	H- <mark>G</mark> IGA.v	y19	1236.4	2	k.VLTTGLPALISWI <mark>K</mark> RKRQQ-NH ₂
b5	662.3	1	H- <mark>G</mark> IGAV.I	y18	1187.0	2	v.LTTGLPALISWIKRKRQQ-NH2
b6	775.3	1	H- <mark>G</mark> IGAVL.k	y17	1130.5	2	I.TTGLPALISWI <mark>K</mark> RKRQQ-NH ₂
b7	903.4	1	H-GIGAVLK.v	y16	1079.8	2	t.TGLPALISWIKRKRQQ-NH ₂
b8	1002.6	1	H- G IGAVLKV.I	y15	1029.4	2	t.GLPALISWI <mark>K</mark> RKRQQ-NH₂
b9	1115.6	1	H- G IGAVLKVL.t	y14	1001.0	2	g.LPALISWIKRKRQQ-NH ₂
b10	1216.7	1	H-GIGAVLKVLT.t	y13	944.4	2	I.PALISWIKRKRQQ-NH2
b12	1374.7	1	H- G IGAVLKVLTTG.I	y12	895.2	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
				y11	860.4	2	a.LISWI <mark>K</mark> RKRQQ-NH ₂
				y10	803.3	2	I.ISWI <mark>K</mark> RKRQQ-NH₂
				y9	746.9	2	i.SWI <mark>K</mark> RKRQQ-NH₂
b13	1487.8	1	H- G IGAVLKVLTTGL.p	y8	703.7	2	s.WI <mark>K</mark> RKRQQ-NH ₂
				у7	609.2	2	w.I <mark>K</mark> RKRQQ-NH ₂
				y5	714.5	1	k.RKRQQ-NH ₂
				y4	558.5	1	r.KRQQ-NH₂

[‡] Oleoylation sites within the amino acid sequence of the peptide are highlighted in **bold red**.

Table S15. lons produced by fragmenting double-oleoylated melittin at m/z 845 ($z = 4$) at RT = 10	.2
min of the EIC (see Fig. 2, Fig. 3 and Fig. S9), LTQFT. Data are presented graphically in Fig. S11a.	

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b4	299.1	1	H-GIGA.v	y20	1432.5	2	I.KVLTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b5	398.2	1	H-GIGAV.I	y19	1236.7	2	k.VLTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b6	511.3	1	H-GIGAVL.k	y18	1187.0	2	v.LTTGLPALISWI <mark>K</mark> RKRQQ-NH ₂
b7	903.5	1	H-GIGAVL <mark>K</mark> .v	y17	1130.5	2	I.TTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b8	1002.6	1	H-GIGAVL <mark>K</mark> V.I	y16	1079.6	2	t.TGLPALISWI <mark>K</mark> RKRQQ-NH₂
b9	1115.7	1	H-GIGAVL <mark>K</mark> VL.t	y16 – H ₂ O	1069.1	2	t.TGLPALISWI <mark>K</mark> RKRQQ-NH₂
b10	1216.6	1	H-GIGAVL <mark>K</mark> VLT.t	y15	1029.2	2	t.GLPALISWI <mark>K</mark> RKRQQ-NH₂
b11	1317.8	1	H-GIGAVL <mark>K</mark> VLTT.g	y14	1000.7	2	g.LPALISWI <mark>K</mark> RKRQQ-NH₂
b12	1374.7	1	H-GIGAVL <mark>K</mark> VLTTG.I	y13	944.4	2	I.PALISWI <mark>K</mark> RKRQQ-NH₂
b13	1487.8	1	H-GIGAVL <mark>K</mark> VLTTGL.p	y12	895.8	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
b13 + H ₂ O	754.3	2	H-GIGAVL <mark>K</mark> VLTTGL.p	y11	860.4	2	a.LISWI <mark>K</mark> RKRQQ-NH₂
				y10	804.2	2	I.ISWI <mark>K</mark> RKRQQ-NH₂
				y9	747.6	2	i.SWI <mark>K</mark> RKRQQ-NH₂
				y8	703.8	2	s.WIKRKRQQ-NH ₂
b18+ H ₂ O	993.9	2	H-GIGAVL <mark>K</mark> VLTTGLPALIS.w	у7	609.2	2	w.IKRKRQQ-NH ₂
				y6	553.5	2	i. K RKRQQ-NH₂
				y4 - NH₃	271.2	2	r.KRQQ-NH ₂

Table S16.	lons produce	d by fragmenting	g double-oleoylated	l melittin at <i>n</i>	n/z 845 (z =	4) at RT = 10.6
min of the E	IC (see Fig. 2,	Fig. 3 and Fig. S	9), LTQFT. Data are	presented gr	aphically in	Fig. S11b.

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b3	492.3	1	H-GIG.a	y21	1356.7	2	v.LKVLTTGLPALISWIKRKRQQ-NH2
b4	563.3	1	H- G IGA.v	y19	1236.4	2	k.VLTTGLPALISWIKR <mark>K</mark> RQQ-NH₂
b5	662.3	1	H- G IGAV.I	y18	1187.0	2	v.LTTGLPALISWIKR <mark>K</mark> RQQ-NH₂
b6	775.3	1	H-GIGAVL.k	y17	1130.2	2	I.TTGLPALISWIKRKRQQ-NH2
b7	903.6	1	H-GIGAVLK.v	y16	1079.7	2	t.TGLPALISWIKR <mark>K</mark> RQQ-NH₂
b8	1002.5	1	H-GIGAVLKV.I	y15	1029.4	2	t.GLPALISWIKR <mark>K</mark> RQQ-NH₂
b9	1115.6	1	H-GIGAVLKVL.t	y14	1000.9	2	g.LPALISWIKR <mark>K</mark> RQQ-NH₂
b10	1216.7	1	H-GIGAVLKVLT.t	y13	944.5	2	I.PALISWIKRKRQQ-NH2
b12	1374.7	1	H-GIGAVLKVLTTG.I	y12	895.8	2	p.ALISWIKR <mark>K</mark> RQQ-NH₂
				y11	860.4	2	a.LISWIKR <mark>K</mark> RQQ-NH ₂
				y10	803.7	2	I.ISWIKR <mark>K</mark> RQQ-NH₂
				у9	747.1	2	i.SWIKR <mark>K</mark> RQQ-NH₂
b13	1488.0	1	H- G IGAVLKVLTTGL.p	y8	703.8	2	s.WIKR <mark>K</mark> RQQ-NH ₂
				у7	609.1	2	w.IKR <mark>K</mark> RQQ-NH₂
				y5	490.0	2	k.R <mark>K</mark> RQQ-NH₂
				y4	822.9	1	r. <mark>K</mark> RQQ-NH₂
				y4 - NH₃	806.1	1	r.KRQQ-NH ₂

⁺ Oleoylation sites within the amino acid sequence of the peptide are highlighted in **bold red**.

Table S17. lons produced by fragmenting double-oleoylated melittin at m/z 845 (z = 4) at RT = 10.9	Э
min of the EIC (see Fig. 2, Fig. 3 and Fig. S9), LTQFT. Data are presented graphically in Fig. S12a.	

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b3	492.3	1	H- <mark>G</mark> IG.a	y21	1356.7	2	v.LKVLTTGLPALISWIKRKRQQ-NH ₂
b4	563.2	1	H- <mark>G</mark> IGA.v	y19	1236.5	2	k.VLTTGLPALISWIKRKRQQ-NH ₂
b5	662.3	1	H- <mark>G</mark> IGAV.I	y18	1187.5	2	v.LTTGLPALISWIK R KRQQ-NH ₂
b6	775.2	1	H- <mark>G</mark> IGAVL.k	y17	1130.6	2	I.TTGLPALISWIKRKRQQ-NH2
b7	903.4	1	H- G IGAVLK.v	y16	1080.2	2	t.TGLPALISWIK R KRQQ-NH₂
b8	1002.7	1	H- G IGAVLKV.I	y15	1029.6	2	t.GLPALISWIK <mark>R</mark> KRQQ-NH₂
b9	1115.6	1	H-GIGAVLKVL.t	y14	1001.0	2	g.LPALISWIK <mark>R</mark> KRQQ-NH₂
b10	1216.7	1	H-GIGAVLKVLT.t	y13	944.4	2	I.PALISWIKRKRQQ-NH2
b12	1374.7	1	H- G IGAVLKVLTTG.I	y12	895.6	2	p.ALISWIK R KRQQ-NH₂
				y11	860.0	2	a.LISWIKRKRQQ-NH ₂
				y10	803.8	2	I.ISWIK R KRQQ-NH₂
				у9	747.5	2	i.SWIK <mark>R</mark> KRQQ-NH₂
b13	1487.9	1	H-GIGAVLKVLTTGL.p	y8	703.7	2	s.WIK <mark>R</mark> KRQQ-NH ₂
				у7	609.1	2	w.IKRKRQQ-NH ₂
				y5	490.1	2	k.RKRQQ-NH ₂
				y4	558.5	1	r.KRQQ-NH₂

Table S18. lons produced by fragmenting double-oleoylated melittin at m/z 845 (z = 4) at RT = 11.2 min of the EIC (see Fig. 2, Fig. 3 and Fig. S9), LTQFT. Data are presented graphically in Fig. S12b.

b-lons	m/z	z	Sequence Ladder [‡]	y-lons	m/z	z	Sequence Ladder [‡]
b3	492.3	1	H- <mark>G</mark> IG.a	y21	1356.9	2	v.LKVLTTGLPALISWIKRKRQQ-NH ₂
b4	563.1	1	H- <mark>G</mark> IGA.v	y19	1236.1	2	k.VLTTGLPALISWIKRKRQQ-NH ₂
b5	662.3	1	H- <mark>G</mark> IGAV.I	y18	1187.0	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b6	775.4	1	H- <mark>G</mark> IGAVL.k	y17	1130.4	2	I.TTGLPALISWIKRKRQQ-NH ₂
b7	903.5	1	H- <mark>G</mark> IGAVLK.v	y16	1079.7	2	t.TGLPALISWIKRK <mark>R</mark> QQ-NH₂
b8	1002.6	1	H- G IGAVLKV.I	y15	1029.1	2	t.GLPALISWIKRK <mark>R</mark> QQ-NH₂
b9	1115.7	1	H- <mark>G</mark> IGAVLKVL.t	y14	1001.1	2	g.LPALISWIKRK <mark>R</mark> QQ-NH₂
b10	1216.8	1	H- G IGAVLKVLT.t	y13	944.4	2	I.PALISWIKRK <mark>R</mark> QQ-NH₂
b12	1374.7	1	H- G IGAVLKVLTTG.I	y12	895.7	2	p.ALISWIKRKRQQ-NH ₂
				y11	860.5	2	a.LISWIKRK <mark>R</mark> QQ-NH₂
				y10	803.8	2	I.ISWIKRK <mark>R</mark> QQ-NH ₂
				у9	747.3	2	i.SWIKRK <mark>R</mark> QQ-NH₂
h13	1487 9	1	H-GIGAVI KVI TTGL p	y8	703.7	2	s.WIKRK <mark>R</mark> QQ-NH₂
510	1407.0			у7	609.1	2	w.IKRKRQQ-NH ₂
				y5	490.4	2	k.RK <mark>R</mark> QQ-NH₂
				y4	822.8	1	r.KRQQ-NH ₂

[‡] Oleoylation sites within the amino acid sequence of the peptide are highlighted in **bold red**.

Table S19. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 9.1 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S14a.

b-lons	m/z	z	Sequence Ladder ¹¹	y-lons	m/z	z	Sequence Ladder ¹
b4	299.2	1	H-GIGA.v	y20	1419.9	2	I.KVLTTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b5	398.2	1	H-GIGAV.I	y19	1355.7	2	k.VLTTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b6	511.3	1	H-GIGAVL.k	y18	1306.5	2	v.LTTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b8	738.8	1	H-GIGAVLKV.I	y17	1249.5	2	I.TTGLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b9	851.6	1	H-GIGAVLKVL.t	y16	1199.0	2	t.TGLPALI <mark>S</mark> WIKRKRQQ-NH₂
b12	1110.8	1	H-GIGAVLKVLTTG.I	y15	1148.7	2	t.GLPALI <mark>S</mark> WIKRKRQQ-NH ₂
b13	1223.7	1	H-GIGAVLKVLTTGL.p	y14	1119.2	2	g.LPALI <mark>S</mark> WIKRKRQQ-NH ₂
b13 + H ₂ O	621.4	2	H-GIGAVLKVLTTGL.p	y13	1063.5	2	I.PALI <mark>S</mark> WIKRKRQQ-NH ₂
$b15 - NH_3$	1374.6	1	H-GIGAVLKVLTTGLPA.I	y10	922.8	2	I.I <mark>S</mark> WIKRKRQQ-NH₂
b16	753.7	2	H-GIGAVLKVLTTGLPAL.i	y9	866.3	2	i. <mark>S</mark> WIKRKRQQ-NH ₂
b17	809.8	2	H-GIGAVLKVLTTGLPALI.s		1020 6	1	
b18	985.0	2	H-GIGAVLKVLTTGLPALIS.w	уо	1060.6		

Table S20. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 9.1 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S14b.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹
b4	299.2	1	H-GIGA.v	y20	1419.9	2	I.KVLTTGLPALI <mark>S</mark> WI <mark>K</mark> RKRQQ-NH ₂
b5	398.2	1	H-GIGAV.I	y19	1355.7	2	k.VLTTGLPALISWIKRKRQQ-NH2
b6	511.3	1	H-GIGAVL.k	y18	1306.5	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b8	738.8	1	H-GIGAVLKV.I	y17	1249.5	2	I.TTGLPALISWIKRKRQQ-NH2
b9	851.6	1	H-GIGAVLKVL.t	y16	1199.0	2	t.TGLPALISWIKRKRQQ-NH ₂
b12	1110.8	1	H-GIGAVLKVLTTG.I	y15	1148.7	2	t.GLPALISWIKRKRQQ-NH ₂
b13	1223.7	1	H-GIGAVLKVLTTGL.p	y14	1119.2	2	g.LPALISWIKRKRQQ-NH ₂
b13 + H ₂ O	621.4	2	H-GIGAVLKVLTTGL.p	y13	1063.5	2	I.PALI <mark>S</mark> WI <mark>K</mark> RKRQQ-NH ₂
$b15 - NH_3$	1374.6	1	H-GIGAVLKVLTTGLPA.I	y10	922.8	2	I.I <mark>S</mark> WIKRKRQQ-NH₂
b16	753.7	2	H-GIGAVLKVLTTGLPAL.i				
b17	809.8	2	H-GIGAVLKVLTTGLPALI.s	y9	866.3	2	i. S WI <mark>K</mark> RKRQQ-NH ₂
b18	971.9	2	H-GIGAVLKVLTTGLPALIS.w				

Table S21. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 9.5 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S15a.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹
b4	299.1	1	H-GIGA.v	y20	1419.9	2	I.KVLTTGLPALISWIKRKRQQ-NH2
b5	398.2	1	H-GIGAV.I	y19	1355.8	2	k.VLTTGLPALISWIKRKRQQ-NH ₂
b6	511.4	1	H-GIGAVL.k	y18	1306.5	2	v.LTTGLPALISWIKRKRQQ-NH2
b8	738.6	1	H-GIGAVLKV.I	y17	1249.4	2	I.TTGLPALISWIKRKRQQ-NH2
b9	851.5	1	H-GIGAVLKVL.t	y16	1199.1	2	t.TGLPALISWI <mark>K</mark> RKRQQ-NH₂
b12	1110.8	1	H-GIGAVLKVLTTG.I	y15	1148.4	2	t.GLPALISWI <mark>K</mark> RKRQQ-NH₂
b13	1223.6	1	H-GIGAVLKVLTTGL.p	y14	1119.2	2	g.LPALISWI <mark>K</mark> RKRQQ-NH ₂
b13 + H ₂ O	621.5	2	H-GIGAVLKVLTTGL.p	y13	1063.5	2	I.PALISWI <mark>K</mark> RKRQQ-NH₂
b15 – NH ₃	1374.6	1	H-GIGAVLKVLTTGLPA.I	y10	923.3	2	I.ISWI <mark>K</mark> RKRQQ-NH₂
b19	947.1	2	H-GIGAVLKVLTTGLPALISW.i	y9	866.1	2	i.SWIKRKRQQ-NH ₂
				y8	822.5	2	s.WI <mark>K</mark> RKRQQ-NH₂
b 20	1002 7	_		у7	729.4	2	w.IKRKRQQ-NH ₂
620	1002.7	2	H-GIGAVLKVLTTGLPALISWI.k	y5	476.7	2	k.RKRQQ-NH₂
				y4	795.9	1	r. K RQQ-NH₂

Table S22. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 9.5 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S15b.

b-lons	m/z	z	Sequence Ladder ¹¹	y-lons	m/z	z	Sequence Ladder ¹
b4	299.2	1	H-GIGA.v	y20	1419.9	2	I.KVLTTGLPALISWIKRKRQQ-NH2
b5	398.2	1	H-GIGAV.I	y19	1355.8	2	k.VLTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b6	511.4	1	H-GIGAVL.k	y18	1306.5	2	v.LTTGLPALISWIKRKRQQ-NH2
b8	738.6	1	H-GIGAVLKV.I	y17	1249.4	2	I.TTGLPALISWIKRKRQQ-NH2
b9	851.5	1	H-GIGAVLKVL.t	y16	1199.0	2	t.TGLPALISWIKRKRQQ-NH₂
b12	1110.8	1	H-GIGAVLKVLTTG.I	y15	1148.4	2	t.GLPALISWIKRKRQQ-NH₂
b13	1223.6	1	H-GIGAVLKVLTTGL.p	y14	1119.2	2	g.LPALISWIKRKRQQ-NH ₂
b13 + H ₂ O	621.5	2	H-GIGAVLKVLTTGL.p	y13	1063.5	2	I.PALISWIKRKRQQ-NH₂
b15 – NH₃	1374.6	1	H-GIGAVLKVLTTGLPA.I	y10	923.3	2	I.ISWIKRKRQQ-NH₂
b19	946.3	2	H-GIGAVLKVLTTGLPALISW.i	y9	866.1	2	i.SWIKRKRQQ-NH₂
				y8	822.5	2	s.WIKRKRQQ-NH₂
h 00	4000 7	2		у7	729.4	2	w.IKRKRQQ-NH ₂
620	1002.7	2	H-GIGAVLKVLTTGLPALISWI.k	y5	489.3	2	k.R <mark>K</mark> RQQ-NH₂
				y4	411.8	1	r. K RQQ-NH₂

Table S23. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group a	It
<i>m</i> /z 838 (z = 4) at RT = 9.5 min of the EIC (see Fig. 3 and Fig. S13), LTQFT.	

b-lons	m/z	z	Sequence Ladder [¶]	y-lons	m/z	z	Sequence Ladder [¶]
b3	492.3	1	H- <mark>G</mark> IG.a	y19	1223.6	2	k.VLTTGLPALISWIKRKRQQ-NH2
b4	563.3	1	H- <mark>G</mark> IGA.v	y18	1174.2	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b5	662.3	1	H- <mark>G</mark> IGAV.I	y17	1117.7	2	I.TTGLPALISWIKRKRQQ-NH2
b5 + H₂O	679.1	1	H- G IGAV.I	y16	1066.6	2	t.TGLPALISWIKRKRQQ-NH2
b6	775.3	1	H- <mark>G</mark> IGAVL.k	y15	1016.5	2	t.GLPALISWIKRKRQQ-NH₂
b8	1002.7	1	H- G IGAVLKV.I	y14	987.9	2	g.LPALISWI <mark>K</mark> RKRQQ-NH₂
b9	1115.6	1	H-GIGAVLKVL.t	y13	931.2	2	I.PALISWIKRKRQQ-NH2
b10	1216.8	1	H-GIGAVLKVLT.t	y12	882.9	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
b12	1374.7	1	H- G IGAVLKVLTTG.I	y11	847.2	2	a.LISWIKRKRQQ-NH ₂
b13	1487.8	1	H- G IGAVLKVLTTGL.p	y10	790.6	2	I.ISWIKRKRQQ-NH2
				у9	733.7	2	i.SWIKRKRQQ-NH₂
				у7	597.1	2	w.IKRKRQQ-NH₂
b13 - H₂O	1469.7	1	H- G IGAVLKVLTTGL.p	y6	1080.1	1	i. K RKRQQ-NH₂
				y4	558.4	1	r.KRQQ-NH ₂
				y4 - NH ₃	541.9	1	r.KRQQ-NH ₂

Table S24. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 9.5 min of the EIC (see Fig. 3 and Fig. S13), LTQFT.

b-lons	m/z	z	Sequence Ladder [¶]	y-lons	m/z	z	Sequence Ladder ¹¹
b3	466.3	1	H- <mark>G</mark> IG.a	y21	1356.8	2	v.LKVLTTGLPALISWIKRKRQQ-NH2
b4	537.1	1	H- G IGA.v	y20	1299.9	2	I.KVLTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b5	636.5	1	H- G IGAV.I	y19	1236.7	2	k.VLTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b6	749.2	1	H- <mark>G</mark> IGAVL.k	y18	1187.5	2	v.LTTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b8	976.6	1	H- G IGAVLKV.I	y17	1130.5	2	I.TTGLPALISWI <mark>K</mark> RKRQQ-NH₂
b9	1089.6	1	H- G IGAVLKVL.t	y16	1080.1	2	t.TGLPALISWI <mark>K</mark> RKRQQ-NH₂
b10	1190.8	1	H- G IGAVLKVLT.t	y15	1029.1	2	t.GLPALISWI <mark>K</mark> RKRQQ-NH₂
b12	1348.8	1	H- <mark>G</mark> IGAVLKVLTTG.I	y14	1000.9	2	g.LPALISWI <mark>K</mark> RKRQQ-NH₂
b12 - H ₂ O	1330.8	1	H- G IGAVLKVLTTG.I	y13	944.4	2	I.PALISWI <mark>K</mark> RKRQQ-NH₂
b12 - H₂O	666.2	2	H- <mark>G</mark> IGAVLKVLTTG.I	y12	896.7	2	p.ALISWI <mark>K</mark> RKRQQ-NH₂
b13	1461.7	1	H- G IGAVLKVLTTGL.p	y10	803.2	2	I.ISWIKRKRQQ-NH₂
b13 - H₂O	1443.8	1	H- G IGAVLKVLTTGL.p	у9	747.2	2	i.SWI <mark>K</mark> RKRQQ-NH₂
				у8	703.8	2	s.WI <mark>K</mark> RKRQQ-NH₂
				у7	609.1	1	w.IKRKRQQ-NH ₂
D18	972.3	2	H-GIGAVLKVLTTGLPALIS.w	y4	558.4	1	r.KRQQ-NH₂
				y4 – NH₃	541.9	1	r.KRQQ-NH₂

Table S25. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 10.2 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S16a.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹
b4	299.1	1	H-GIGA.v	y21	1476.2	2	v.LKVLTTGLPALISWIKRKRQQ-NH ₂
b5	398.2	1	H-GIGAV.I	y20	1419.9	2	I.KVLTTGLPALISWIKRKRQQ-NH ₂
b6	511.3	1	H-GIGAVL.k	y19	1223.6	2	k.VLTTGLPALISWIKRKRQQ-NH₂
b7	903.6	1	H-GIGAVL <mark>K</mark> .v	y18	1174.0	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b8	1002.6	1	H-GIGAVL <mark>K</mark> V.I	y17	1117.4	2	I.TTGLPALISWIKRKRQQ-NH2
b9	1115.7	1	H-GIGAVL <mark>K</mark> VL.t	y16	1067.3	2	t.TGLPALISWIKRKRQQ-NH₂
b10	1216.7	1	H-GIGAVL <mark>K</mark> VLT.t	y15	1016.4	2	t.GLPALISWIKRKRQQ-NH ₂
b10 - H ₂ O	1198.9	1	H-GIGAVL <mark>K</mark> VLT.t	y14	987.6	2	g.LPALISWIKRKRQQ-NH ₂
b11	1317.7	1	H-GIGAVL <mark>K</mark> VLTT.g	y13	931.1	2	I.PALISWIKRKRQQ-NH ₂
b12	1374.7	1	H-GIGAVL <mark>K</mark> VLTTG.I	у9	733.5	2	i.SWIKRKRQQ-NH ₂
b12 - H ₂ O	1356.6	1	H-GIGAVL <mark>K</mark> VLTTG.I	у7	597.5	2	w.IKRKRQQ-NH ₂
b12 - H ₂ O	678.1	2	H-GIGAVL <mark>K</mark> VLTTG.I	у6	1080.5	1	i. K RKRQQ-NH₂
b13	1488.0	1	H-GIGAVL <mark>K</mark> VLTTGL.p	у6	540.9	2	i. K RKRQQ-NH₂
b13 - H ₂ O	1470.1	1	H-GIGAVL <mark>K</mark> VLTTGL.p	y6 - NH₃	1063.5	1	i. K RKRQQ-NH₂
b14 - H ₂ O	783.2	2	H-GIGAVL <mark>K</mark> VLTTGLP.a		EE0 2	4	
b18	985.1	2	H-GIGAVLKVLTTGLPALIS.w	y4	000.0		ו.תתעע-ווח2

Table S26. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 10.2 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S16b.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹
b4	299.1	1	H-GIGA.v	y21	1476.2	2	v.LKVLTTGLPALISWI <mark>K</mark> RKRQQ-NH ₂
b5	398.2	1	H-GIGAV.I	y20	1419.9	2	I.KVLTTGLPALISWIKRKRQQ-NH2
b6	511.3	1	H-GIGAVL.k	y19	1236.6	2	k.VLTTGLPALISWIKRKRQQ-NH2
b7	877.5	1	H-GIGAVL <mark>K</mark> .v	y18	1187.2	2	v.LTTGLPALISWIKRKRQQ-NH ₂
b8	976.6	1	H-GIGAVL <mark>K</mark> V.I	y17	1130.3	2	I.TTGLPALISWIKRKRQQ-NH2
b9	1089.6	1	H-GIGAVL <mark>K</mark> VL.t	y16	1080.0	2	t.TGLPALISWIKRKRQQ-NH ₂
b10	1190.7	1	H-GIGAVL <mark>K</mark> VLT.t	y15	1030.1	2	t.GLPALISWIKRKRQQ-NH ₂
b11	1291.7	1	H-GIGAVL <mark>K</mark> VLTT.g	y14	1000.7	2	g.LPALISWIKRKRQQ-NH ₂
b11 - H ₂ O	1273.7	1	H-GIGAVL <mark>K</mark> VLTT.g	y13	944.3	2	I.PALISWIKRKRQQ-NH ₂
b12	1348.6	1	H-GIGAVL <mark>K</mark> VLTTG.I	y12	896.4	2	p.ALISWI <mark>K</mark> RKRQQ-NH ₂
b12 - H ₂ O	1330.8	1	H-GIGAVL <mark>K</mark> VLTT G.I	y11	860.0	2	a.LISWIKRKRQQ-NH ₂
b12 - H ₂ O	665.9	2	H-GIGAVL <mark>K</mark> VLTT G.I	y10	803.2	2	I.ISWIKRKRQQ-NH ₂
b13	1461.8	1	H-GIGAVL <mark>K</mark> VLTTGL.p	у9	745.9	2	i.SWIKRKRQQ-NH ₂
b15	816.1	2	H-GIGAVL <mark>K</mark> VLTTGLPA.I	y8	703.5	2	s.WI <mark>K</mark> RKRQQ-NH₂
h10	072.4			у7	610.5	2	w.I <mark>K</mark> RKRQQ-NH ₂
b18	972.4	2.4 2	P-GIGAVLKVLTTGLPALIS.w	y4	558.3	2	r.KRQQ-NH ₂

Table S27. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 10.6 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S17a.

b-lons	m/z	z	Sequence Ladder [¶]	y-lons	m/z	z	Sequence Ladder ¹
b3	492.3	1	H-GIG.a	y19	1223.6	2	k.VLTTGLPALISWIKRKRQQ-NH₂
b4	563.3	1	H- <mark>G</mark> IGA.v	y18	1173.9	2	v.LTTGLPALISWIKRKRQQ-NH2
b5	662.3	1	H- G IGAV.I	y17	1117.8	2	I.TTGLPALISWIKRKRQQ-NH2
b5 + H ₂ O	679.2	1	H- G IGAV.I	y16	1067.0	2	t.TGLPALISWIKR <mark>K</mark> RQQ-NH₂
b6	775.3	1	H- G IGAVL.k	y15	1016.3	2	t.GLPALISWIKRKRQQ-NH₂
b8	1002.6	1	H-GIGAVLKV.I	y14	988.0	2	g.LPALISWIKR <mark>K</mark> RQQ-NH₂
b9	1115.6	1	H-GIGAVLKVL.t	y13	931.4	2	I.PALISWIKRKRQQ-NH2
b10	1216.8	1	H-GIGAVLKVLT.t	y12	882.9	2	p.ALISWIKR <mark>K</mark> RQQ-NH₂
b12	1374.7	1	H-GIGAVLKVLTTG.I	y11	847.3	2	a.LISWIKRKRQQ-NH ₂
b13	1487.7	1	H-GIGAVLKVLTTGL.p	y10	790.5	2	I.ISWIKRKRQQ-NH₂
				у9	734.0	2	i.SWIKR <mark>K</mark> RQQ-NH₂
				у8	690.8	2	s.WIKRKRQQ-NH ₂
				у7	598.6	2	w.IKRKRQQ-NH₂
	4470.4			y6	1080.3	1	i.KRKRQQ-NH ₂
D13 - H ₂ O	1470.1	1	H-GIGAVLKVLTTGL.p	y5	952.9	1	k.RKRQQ-NH₂
				y5	476.9	2	k.RKRQQ-NH₂
				y4	796.4	1	r. K RQQ-NH₂
				y4 - NH₃	779.7	1	r. K RQQ-NH₂

Table S28. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 10.6 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S17b.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹¹
b3	466.3	1	H- <mark>G</mark> IG.a	y21	1356.7	2	v.LKVLTTGLPALISWIKRKRQQ-NH ₂
b4	537.2	1	H- <mark>G</mark> IGA.v	y20	1299.9	2	I.KVLTTGLPALISWIKRKRQQ-NH2
b5	636.2	1	H- G IGAV.I	y19	1236.5	2	k.VLTTGLPALISWIKR <mark>K</mark> RQQ-NH₂
b6	749.1	1	H- <mark>G</mark> IGAVL.k	y18	1186.8	2	v.LTTGLPALISWIKRKRQQ-NH2
b7	877.4	1	H- G IGAVLK.v	y17	1130.6	2	I.TTGLPALISWIKR <mark>K</mark> RQQ-NH₂
b8	976.6	1	H- <mark>G</mark> IGAVLKV.I	y16	1080.1	2	t.TGLPALISWIKR <mark>K</mark> RQQ-NH₂
b9	1089.7	1	H- G IGAVLKVL.t	y15	1029.5	2	t.GLPALISWIKRKRQQ-NH ₂
b10	1190.2	1	H- G IGAVLKVLT.t	y14	1001.0	2	g.LPALISWIKRKRQQ-NH ₂
b12	1348.6	1	H- <mark>G</mark> IGAVLKVLTTG.I	y13	944.4	2	I.PALISWIKR <mark>K</mark> RQQ-NH₂
b12 - H ₂ O	1330.8	1	H- <mark>G</mark> IGAVLKVLTTG.I	y12	896.6	2	p.ALISWIKR <mark>K</mark> RQQ-NH₂
b12 - H ₂ O	666.1	2	H- <mark>G</mark> IGAVLKVLTTG.I	y11	860.4	2	a.LISWIKR <mark>K</mark> RQQ-NH₂
b13	1461.7	1	H- <mark>G</mark> IGAVLKVLTTGL.p	y10	803.7	2	I.ISWIKR <mark>K</mark> RQQ-NH₂
b13 - H ₂ O	1443.7	1	H- <mark>G</mark> IGAVLKVLTTGL.p	y9	746.7	2	i.SWIKRKRQQ-NH2
b18	972.3	2	H- G IGAVLKVLTTGLPALIS.w	у7	703.8	2	w.IKRKRQQ-NH ₂
				y5	609.1	2	k.R <mark>K</mark> RQQ-NH₂
				y4	822.6	1	r. K RQQ-NH₂
				y4	411.4	2	r. <mark>K</mark> RQQ-NH₂

Table S29. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 10.9 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S18a.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹
b3	492.3	1	H-GIG.a	y19	1223.6	2	k.VLTTGLPALISWIK R KRQQ-NH₂
b4	563.2	1	H- <mark>G</mark> IGA.v	y18	1173.8	2	v.LTTGLPALISWIKRKRQQ-NH2
b5	662.3	1	H- <mark>G</mark> IGAV.I	y17	1117.9	2	I.TTGLPALISWIK R KRQQ-NH₂
b5 + H ₂ O	679.0	1	H- <mark>G</mark> IGAV.I	y16	1067.1	2	t.TGLPALISWIK R KRQQ-NH₂
b6	775.3	1	H- <mark>G</mark> IGAVL.k	y15	1016.5	2	t.GLPALISWIK R KRQQ-NH₂
b8	1002.5	1	H-GIGAVLKV.I	y14	988.1	2	g.LPALISWIK R KRQQ-NH₂
b9	1115.7	1	H-GIGAVLKVL.t	y13	931.4	2	I.PALISWIK R KRQQ-NH₂
b10	1216.7	1	H-GIGAVLKVLT.t	y12	882.8	2	p.ALISWIKRKRQQ-NH ₂
b12	1374.7	1	H-GIGAVLKVLTTG.I	y11	847.3	2	a.LISWIKRKRQQ-NH ₂
b13	1487.7	1	H- G IGAVLKVLTTGL.p	y10	790.4	2	I.ISWIKRKRQQ-NH2
				у9	734.1	2	i.SWIK R KRQQ-NH₂
				y8	690.7	2	s.WIKRKRQQ-NH ₂
				у7	598.6	2	w.IK R KRQQ-NH₂
b13 – H ₂ O	1470.2	1	H-GIGAVLKVLTTGL.p	y6	1080.1	1	i.KRKRQQ-NH ₂
				y5	953.2	1	k.RKRQQ-NH ₂
				y4	558.6	1	r.KRQQ-NH₂
				y4 - NH₃	541.3	1	r.KRQQ-NH₂

Table S30. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 10.9 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S18b.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹¹
b3	466.3	1	H- <mark>G</mark> IG.a	y21	1356.7	2	v.LKVLTTGLPALISWIK R KRQQ-NH ₂
b4	537.2	1	H- G IGA.v	y18	1186.9	2	v.LTTGLPALISWIK R KRQQ-NH ₂
b5	636.2	1	H- G IGAV.I	y17	1130.5	2	I.TTGLPALISWIK <mark>R</mark> KRQQ-NH₂
b6	749.3	1	H- G IGAVL.k	y16	1080.1	2	t.TGLPALISWIK <mark>R</mark> KRQQ-NH₂
b7	877.4	1	H- G IGAVLK.v	y15	1029.5	2	t.GLPALISWIK <mark>R</mark> KRQQ-NH₂
b8	976.6	1	H- G IGAVLKV.I	y14	1000.8	2	g.LPALISWIK <mark>R</mark> KRQQ-NH₂
b9	1089.6	1	H- G IGAVLKVL.t	y13	944.4	2	I.PALISWIK <mark>R</mark> KRQQ-NH₂
b12 - H₂O	1330.8	1	H- G IGAVLKVLTTG.I	y12	896.4	2	p.ALISWIK <mark>R</mark> KRQQ-NH₂
b12 - H₂O	666.0	2	H- G IGAVLKVLTTG.I	y11	860.4	2	a.LISWIK <mark>R</mark> KRQQ-NH₂
				y10	803.7	2	I.ISWIK <mark>R</mark> KRQQ-NH₂
				y9	747.2	2	i.SWIK <mark>R</mark> KRQQ-NH₂
				y8	703.8	2	s.WIK <mark>R</mark> KRQQ-NH₂
140	070.0			у7	609.1	2	w.IKRKRQQ-NH ₂
D18	972.2	2	H-GIGAVLKVLTTGLPALIS.w	y5	978.8	1	k. <mark>R</mark> KRQQ-NH₂
				y5	489.9	1	k. <mark>R</mark> KRQQ-NH₂
				y4	558.3	1	r.KRQQ-NH ₂
				y4 - NH₃	541.1	1	r.KRQQ-NH ₂

Table S31. lons produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 11.2 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S19a.

b-lons	m/z	z	Sequence Ladder ¹	y-lons	m/z	z	Sequence Ladder ¹
b3	492.2	1	H- <mark>G</mark> IG.a	y19	1223.7	2	k.VLTTGLPALISWIKRK R QQ-NH₂
b4	563.2	1	H- <mark>G</mark> IGA.v	y18	1174.2	2	v.LTTGLPALISWIKRKRQQ-NH2
b5	662.4	1	H- <mark>G</mark> IGAV.I	y17	1117.7	2	I.TTGLPALISWIKRKRQQ-NH₂
b5 + H ₂ O	679.1	1	H- G IGAV.I	y16	1066.9	2	t.TGLPALISWIKRK R QQ-NH₂
b6	775.2	1	H- <mark>G</mark> IGAVL.k	y15	1016.4	2	t.GLPALISWIKRK <mark>R</mark> QQ-NH₂
b8	1002.6	1	H- G IGAVLKV.I	y14	988.0	2	g.LPALISWIKRK R QQ-NH₂
b9	1115.6	1	H-GIGAVLKVL.t	y13	931.5	2	I.PALISWIKRKRQQ-NH ₂
b10	1216.7	1	H-GIGAVLKVLT.t	y12	882.8	2	p.ALISWIKRKRQQ-NH ₂
b12	1374.7	1	H-GIGAVLKVLTTG.I	y11	847.2	2	a.LISWIKRKRQQ-NH ₂
b13	1487.7	1	H-GIGAVLKVLTTGL.p	y10	790.8	2	I.ISWIKRKRQQ-NH2
				у9	734.2	2	i.SWIKRK <mark>R</mark> QQ-NH₂
				y8	690.8	2	s.WIKRKRQQ-NH ₂
				у7	598.0	2	w.IKRKRQQ-NH ₂
b13 – H ₂ O	1469.8	1	H-GIGAVLKVLTTGL.p	y6	1080.1	1	i.KRKRQQ-NH ₂
				y5	953.2	1	k.RK <mark>R</mark> QQ-NH₂
				y4	796.1	1	r.K R QQ-NH₂
				y4 - NH₃	779.5	1	r.K R QQ-NH₂

Table S32. Ions produced by fragmenting melittin modified by 1 oleoyl group + 1 palmitoyl group at m/z 838 (z = 4) at RT = 11.2 min of the EIC (see Fig. 3 and Fig. S13), LTQFT. Data are presented graphically in Fig. S19b.

b-lons	m/z	z	Sequence Ladder [¶]	y-lons	m/z	z	Sequence Ladder ¹¹
b3	466.3	1	H- G IG.a	y21	1356.8	2	v.LKVLTTGLPALISWIKRKRQQ-NH ₂
b4	537.2	1	H- G IGA.v	y19	1236.5	2	k.VLTTGLPALISWIKRK <mark>R</mark> QQ-NH₂
b5	636.4	1	H- G IGAV.I	y18	1186.5	2	v.LTTGLPALISWIKRK <mark>R</mark> QQ-NH₂
b6	749.8	1	H- <mark>G</mark> IGAVL.k	y17	1130.4	2	I.TTGLPALISWIKRK <mark>R</mark> QQ-NH₂
b7	877.7	1	H- G IGAVLK.v	y16	1079.7	2	t.TGLPALISWIKRK <mark>R</mark> QQ-NH₂
b8	976.6	1	H- <mark>G</mark> IGAVLKV.I	y15	1029.1	2	t.GLPALISWIKRK <mark>R</mark> QQ-NH₂
b9	1089.6	1	H- G IGAVLKVL.t	y14	1000.7	2	g.LPALISWIKRK <mark>R</mark> QQ-NH₂
b10	1190.1	1	H- G IGAVLKVLT.t	y13	944.5	2	I.PALISWIKRK <mark>R</mark> QQ-NH₂
b12	1348.7	1	H- G IGAVLKVLTTG.I	y12	896.0	2	p.ALISWIKRKRQQ-NH ₂
b12 - H ₂ O	1330.6	1	H- G IGAVLKVLTTG.I	y11	860.5	2	a.LISWIKRK <mark>R</mark> QQ-NH₂
b12 - H ₂ O	665.8	2	H- <mark>G</mark> IGAVLKVLTTG.I	y10	803.9	2	I.ISWIKRK <mark>R</mark> QQ-NH₂
b13	1462.2	1	H- G IGAVLKVLTTGL.p	у9	746.8	2	i.SWIKRK <mark>R</mark> QQ-NH₂
b13 - H ₂ O	1443.9	1	H- G IGAVLKVLTTGL.p	y8	703.8	2	s.WIK <mark>R</mark> QQ-NH₂
h19	072.2	2		y5	489.9	2	k.RK R QQ-NH₂
אומ	972.3	2	H-GIGAVLKVLTTGLPALIS.w	y4	822.6	1	r.KRQQ-NH ₂

References

- 1 C. J. Van Echteld, B. de Kruijff, J. G. Mandersloot and J. De Gier, *Biochim. Biophys. Acta*, 1981, **649**, 211–220.
- 2 J. R. Henriksen, T. L. Andresen, L. N. Feldborg, L. Duelund and J. H. Ipsen, *Biophys. J.*, 2010, **98**, 2199–2205.
- 3 D. V. Zhelev, *Biophys. J.*, 1998, **75**, 321–330.
- 4 D. Needham and D. V. Zhelev, Ann. Biomed. Eng., 1995, 23, 287–298.