Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

Nanopore-based measurement of the interaction of P450cam monooxygenase and putidaredoxin at single-molecule resolution

Hui Chen^{†a}, Yao Lin^{†a,b}, Yi-Tao Long^b, Shelley D. Minteer^{a,*}, and Yi-Lun Ying^{b,c*}

- ^a Department of Chemistry, University of Utah
- ^b State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University
- ^c Chemistry and Biomedicine Innovation Center, Nanjing University

Email: minteer@chem.utah.edu; yilunying@nju.edu.cn

[†] These authors contributed equally to this work

Figure S1. SDS-PAGE analysis of purified protein. Lane 1: P450cam; Lane 2: Pdx; Lane 3: FeSII; Lane M: marker.

Figure S2. The baseline current trace from the Pdx-modified nanopore.

Figure S3. Histogram of duration time of P450cam with the FeSII modified nanopore. The histogram of duration time is fit to a Gaussian function. The data was collected under an applied voltage of +200 mV.

Figure S4. The statistical duration time of P450cam with the Pdx modified nanopore at applied voltages from 100 mV to 400 mV.

Figure S5. The statistical blockage frequency of P450cam with the Pdx modified nanopore at applied voltages from 100 mV to 400 mV.