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Figure S1. Raw single-frame capacitance image measured with a chip incubated 1 min in an oDCB in 
water emulsion. The scale bar represents 20 µm. 
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Figure S2 (A) Optical micrograph of an oDCB droplets sedimented on a glass slide. The micrograph was 
taken 1 min after preparation of the emulsion. The scale bar represents 10 µm. (B) Size distribution of 
the droplets measure from the analysis of optical micrographs as shown in (A). 
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Numerical simulations of oDCB droplets and calibration curves for size estimation. We rely on ENBIOS 
simulations to estimate the size of measured oil droplets. We run ENBIOS simulations of spheres of 
different sizes with a permittivity of 𝜀𝜀𝑟𝑟  = 9.9 (i.e., the permittivity of oDCB) immersed in milliQ water, 
thereby obtaining effective capacitance (𝐶𝐶eff) maps for each considered droplet. We then apply two 
different algorithms (described below) to estimate the size of the sphere based on the capacitance 
response at the nanoelectrodes. Consequently, we obtain an estimated size (𝑟𝑟app) vs real size (𝑟𝑟p) curve, 
which can be used to extract the true size of a droplet based on its measured capacitance profile in real 
experiments. To this end, we consider the following approaches: an approach based on the second-
momentum of the electrodes’ capacitance response, and an approach based on estimating the sphere’s 
projected area on the array plane upon binarizing the capacitance response.  

Second momentum approach. This approach estimates the radius of the sphere 𝑟𝑟app based on the 
following equation: 

−𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎2 =
∑ ∑ �(𝑗𝑗 𝑝𝑝𝑥𝑥 − 𝑑𝑑𝑥𝑥)2 + �𝑖𝑖 𝑝𝑝𝑦𝑦 − 𝑑𝑑𝑦𝑦�

2�𝑗𝑗𝑖𝑖 ∆𝐶𝐶eff(𝑖𝑖, 𝑗𝑗)
∑ ∑ ∆𝐶𝐶eff(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖

 

where Δ𝐶𝐶eff =𝐶𝐶eff (w/ analyte) – 𝐶𝐶eff (w/o analyte) is the capacitance variation between a measurement 
with the droplet and a measurement without the droplet, px and py represent the intra-electrode pitch 
along the x- and y-directions, and (dx, dy) is the projected center of mass of the analyte, which is known 
a-priori in simulations and can be extracted from experiments as 

�𝑑𝑑𝑥𝑥 ,𝑑𝑑𝑦𝑦� =
∑ ∑ �(𝑗𝑗 𝑝𝑝𝑥𝑥𝑥𝑥�) + �𝑖𝑖 𝑝𝑝𝑦𝑦𝑦𝑦���𝑗𝑗𝑖𝑖 ∆𝐶𝐶eff(𝑖𝑖, 𝑗𝑗)

∑ ∑ ∆𝐶𝐶eff(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖
 

 
where here ΔCeff(i,j) is the measured (experimental) capacitance variation at electrode (i,j). 
To identify which electrodes have to be considered for the calculation, we first apply a threshold: all 
electrodes whose response ΔCeff is lower than the threshold are not used in the equation. 
Figure S3 shows the estimation curves (estimated size as a function of real size) for different choices of 
the threshold. Clearly, higher thresholds entail a smaller number of electrodes considered, and 
consequently smaller rapp values. For the analysis a threshold of 5 aF was selected.  



S5 
 

 

Figure S3. Apparent radius as a function of the real radius of oDCB droplets, as calculated with the 
second-momentum equation. Different curves correspond to different choices for the threshold (i.e., 
neglecting the electrodes whose response is lower than the threshold). If the threshold excludes all 
electrodes but the central one, the apparent size drops to zero.  

 

Binarized projected area approach. We consider also this alternative approach, since it proved to 
perform better than the second-momentum equation for small droplets in noisy environments (results 
not shown). The first step consists of binarizing the capacitance response of the array: electrodes whose 
response exceeds a threshold are assigned a value of ‘1’, all others ‘0’. The apparent radius is then 
estimated following the approach used in the bwarea MATLAB function: 
 
1) the area of a pixel is calculated as 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑥𝑥 ⋅ 𝑝𝑝𝑦𝑦, where px and py are the intra-electrodes pitch 
along the x- and y- directions 
2) A weight wi is assigned to each pixel 
3) using the weights and the area of each pixel, we calculate an effective pixel area: 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑖𝑖𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
4) the projected area of the object is calculated as the sum of the effective areas of its pixels:  

𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖=1

 

5) the apparent radius is calculated as: 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = �𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝜋𝜋 

For each pixel, the calculation of the weight is based on inspecting the value (‘1’ or ‘0’) of all its neighbor 
pixels. Each pixel can be seen as the central pixel of a 3x3 pixel matrix, and within such 3x3 pixel matrix, 
we can identify four 2x2 pixel subsets (top-left, top-right, bottom-left, bottom-right). For each 2-by-2 
subset, we first calculate a partial weight. Then, the total weight wi of the pixel is the summation of the 
partial weights of the 2-by-2 subsets. 
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For a given 2-by-2 subset of pixels, there are six possible scenarios of pixel configuration: 
- All the four pixels are off: in this case the 2-by-2 subset is assigned a partial weight of 0 
- Only one pixel is ‘1’: the assigned partial weight is 1/4 
- Two adjacent pixels are ‘1’: the assigned partial weight is 1/2 
- Two diagonal pixels are ‘1’: the assigned partial weight is 3/4 
- Three pixels are ‘1’: the assigned partial weight is 7/8 
- All four pixels are ‘1’: the assigned partial weight is 1 
Consequently, pixels surrounded by all ‘1’-pixels get a higher weight, pixels surrounded by ‘0’-pixels get 
a smaller weight. Figure S4 shows the calculated estimation curves, again for different choices of the 
threshold. These curves are also much closer to the ideal line (rapp=rp) than for the second momentum 
approach. 

 

 

Figure S4. Apparent radius as a function of the real radius of oDCB droplets, as calculated with the 
binary projected-area approach. Different curves correspond to different choices for the threshold (i.e., 
neglecting the electrodes whose response is lower than the threshold).  
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Determination of the droplet height. 

A spherical droplet with radius r0 has a volume: 

 𝑉𝑉 =
4𝜋𝜋
3
𝑟𝑟03 

 

(S1) 

Assuming that the droplet has a constant volume and wets the surface of the chip forming a spherical 
dome (Figure S5) of radius 𝑟𝑟1 and height h1 we obtain the following relation: 

 
𝑉𝑉 = � 𝜋𝜋𝑥𝑥2𝑑𝑑𝑑𝑑

𝑟𝑟1

𝑟𝑟1−ℎ1
= � 𝜋𝜋(𝑟𝑟12 − 𝑦𝑦2)𝑑𝑑𝑑𝑑

𝑟𝑟1

𝑟𝑟1−ℎ1
= 𝜋𝜋 �𝑟𝑟1 −

1
3
ℎ1� ℎ1

2 
(S2) 

   
From the relation 

 𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤2 + (𝑟𝑟1 − ℎ1)2 = 𝑟𝑟12  

where 𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤 is the measured footprint radius of the sedimented drop on the chip, it follows that: 

𝑟𝑟1 = 𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤2+ℎ12

2ℎ1
 (S3) 

Substitution into eq (S2) we obtain: 

 𝑉𝑉 =
𝜋𝜋
6
�3𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤2ℎ1 + ℎ1

3� (S4) 

 

Substituting 𝑉𝑉 from eq (S1) and solving for h1 gives: 

 ℎ1 = ��𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤6 + 16 𝑟𝑟06 + 4𝑟𝑟03�
1/3

− ��𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤6 + 16 𝑟𝑟06 − 4 𝑟𝑟03�
1/3

 (S5) 

 

 

Figure S5. Droplet’s geometry at the surface of the chip. 



S8 
 

 

Figure S6. Typical optical micrograph of a 1 µL oDCB droplet at the surface of a chip. The measurement 
is made in DI-water at room temperature. 
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Movie S1. Real-time capacitance imaging of an oDCB in DI-water emulsion. At the beginning of the 
movie the array is in contact with pure DI-water and the emulsion is added at c.a. 4 s (real time, frame 
20 in the movie). The movie was generated with an in-house program coded in Matlab. The axes are 
plotted in pixel length. The pitch of the array defines the distance between pixel’s centers; the pitch is 
0.6 um and 0.89 um in the X and Y directions, respectively. The movie is played at 3.25 times the real 
speed. The color map describes the capacitance variation (in aF) between the average of the first five 
frames of the movie (recorded in DI-water) and the following frames.  

 

Movie S2. Real-time tracking and trajectory analysis of oDCB droplets. Panel (A) shows the row images 
analyzed by the particle tracking code. The code (run on Matlab 2012) is freely provided by Daniel Blair 
and Eric Dufresne at the following address: http://site.physics.georgetown.edu/matlab/. A median filter 
was added to the code to remove the small droplets (< 5 µm diameter). Panel (B) shows the filtered 
image. The axes are in pixels. The centroid of the peaks found on the filtered image are plotted in panel 
(C). Note that despite using a code designed for locating the peaks with sub-micron resolution, the 
number of pixel per peak (typically 10) is not enough to reliably locate the centroid of the peak with a 
sub-micron resolution and thus we round the position to the micron digit. All the centroids in each 
frame are analyzed to reconstruct the trajectory of each droplet as shown in panel (D). 

 

 

http://site.physics.georgetown.edu/matlab/
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