Supplementary Information

Exploring Hitherto Uninvestigated Reactions of the Fatty Acid Peroxygenase CYP152A1: Catalase Reaction and Compound I Formation

Hiroki Onoda^{a,b}, Shota Tanaka^a, Yoshihito Watanabe^a, Osami Shoji*^a.

^aDepartment of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan, ^bDepartment of Medical LifeScience, Graduate School of Medical LifeScience, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Address corresponding to:

Osami Shoji, Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan. Email: shoji.osami@a.mbox.nagoya-u.ac.jp

Supplemental Figures

Figure S1. Time course of O_2 generation under 4 mM Hydrogen Peroxide with CYP152A1 in the presence (colored) or absence (gray) of n-short-chain fatty acids (A) and n-medium/long chain fatty acids (B). The final concentrations of fatty acid were 20 mM for short-chain fatty acid such as Acetic acid (C₂), Propionic acid (C₃), Butanoic acid (C₄), Pentanoic acid (C₅), Hexanoic acid (C₆), and Hexanoic acid(C₇), 10 mM for medium-chain fatty acid such as Octanoic acid (C₈) and Nonanoic acid (C₉), 5 mM for Decanoic acid (C₁₀), and 50 μ M for Myristic acid (C₁₄).

Figure S2. Michaelis–Menten kinetics carve of CYP152's catalase reaction rate in the presence (colored) or absence (gray) of n-short-chain fatty acids (A) and n-medium/long chain fatty acids (B).