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PDB structures 

Calculated structures described in this work have been submitted alongside the manuscript as 
PDB files. The Table below describes the filename of the PDB file and a brief description of 
the structure. The corresponding structures are shown in Figs S4-S31, 

PDB file Description 
PDB1 [R-M(p-cymene)(S,S-TsDPEN-H)H] with metal = R, diamine= S,S, axial = Sa 

(shown in Figure 3a) 

PDB2 [R-M(p-cymene)(S,S-TsDPEN-H)H] with metal = R, diamine= S,S, axial = Ra 
(shown in Figure 3b) 

PDB3 Transition state between [R-M(p-cymene)(S,S-TsDPEN-HH] with metal = R, 
diamine= S,S, axial = Ra / Sa (shown in Figure S1 of the ESI) 

PDB4 [M(η6-p-cymene)(TsDPEN-H)H] where metal = R, diamine = S,S showing 6 
coordination (shown in Figure 4a) (the same as PDB1) 

PDB5 [M(η6-p-cymene)(TsDPEN-H)H] where metal = S, diamine = S,S showing 2 
coordination (shown in Figure 4b) 

PDB6 [R-Ru(p-cymene)(S,S-TsDPEN-H)H] metal=R, diamine = S,S, axial = Ra with 
acetophenone and CO2(shown in Figure S2) 

PDB7 Species A for ruthenium (shown in Figure 5) for Sa 

PDB8 Species A for ruthenium (shown in Figure 5) for Ra 
PDB9 Species B for ruthneium (shown in Figure 5) for Sa 
PDB10 Species B for ruthenium (shown in Figure 5) for Ra 

PDB11 Species C for ruthenium (shown in Figure 5) for Sa 
PDB12 Species C for ruthenium (shown in Figure 5) for Ra 
PDB13 Species D for ruthenium (shown in Figure 5) for Ra 

PDB14 Species E for ruthenium (shown in Figure 5) for Ra (R-phenylethanol) with 
energy 7 kJ/mol 

PDB15 Species E for ruthenium (shown in Figure 5) for Ra (S-phenylethanol) with 
energy 26 kJ/mol 

PDB16 Species A for osmium (shown in Figure 7) for Sa 

PDB17 Species A for osmium (shown in Figure 7)  for Ra 
PDB18 Species B for osmium (shown in Figure 7)  for Sa 
PDB19 Species B for osmium (shown in Figure 7) for Ra 

PDB20 Species C for osmium (shown in Figure 7) for Sa 
PDB21 Species C for osmium (shown in Figure 7) for Ra 
PDB22 Species D for osmium (shown in Figure 7) for Ra 

PDB23 Species E for osmium (shown in Figure 7) for Ra with energy 7 k/mol 
PDB24 Species E for osmium (shown in Figure 7)  for Ra with energy 26 k/mol 
PDB25 Another conformer of the [Ru(p-cymene)(S,S-TsDPEN-H)] / acetophenone 

assembly with the COˑˑˑHN hydrogen bonding (denoted with the dashed line). 
(shown in Figure 10) 

PDB26 Species (iii) in Figure 11 
PDB27 Species (iv) in Figure 11. An estimated transition state of the hydride transfer, 

corresponding to the structure in middle of Fig. 9 
PDB28 Species (v) in Figure 11 
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Diamine ligand nomenclature 

Nomenclature of the tosyl diamine ligand (S,S)-1,2-N-tosyl-diphenylethylenediamine has 

been included with the following designation of ligand protonation (anionic charge). Note that 

all diamine ligands in this work are of absolute configuration (S,S).  

 

TsDPEN 1,2-N-tosyl-diphenylethylenediamine (neutral species) 

 

 

TsDPEN-H Deprotonation of the nitrogen adjacent to tosyl (L- anionic species)  

 

 

TsDPEN-H2 Deprotonation of both nitrogen atoms (L2- dianionic species) 
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Chirality assignment 

There are four elements of chirality in the hydride complexes under study:  

1. Chirality of the chelate carbon atoms 

2. Metal chirality 

3. Axial chirality of the cymene bound to metal 

4. Chirality of the chelate ring 

 

1. Chirality of the chelate ring carbons 

The hydride complex showing chiral carbon ligand atoms is shown. In the case of the chelate 

ring carbons in the hydride complex, N bound to S (in the tosylate, Ts) has highest priority, 

followed by N bound to C. Of the two carbon atoms, one is bound to NH2, the other one is 

bound to NTs. The following CIP priorities can be assigned (from lowest to highest): 

1. H (1 – lowest priority) 

2. C-NH2 (12, 12, 14 – N is attached to protons only) 

3. C-NTs (12, 12, 14 – N is attached to tosylate sulphur) 

4. N (14 – highest priority) 

The two chiral carbons are shown highlighted in cyan. The hydrogen is pointing behind the 

plane of the figure. The numbers display the priorities of the bound atoms. Hence, the 

configuration of both chelate ring carbons are S.  

 

  
 

Anticlockwise, (S) 

 

Anticlockwise, (S) 
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2. Metal chirality 

In this case we treat the metal as tetrahedrally-coordinated. The arene has the highest priority 

(6 x 12, following the convention suggested by Lecomte et al., and Stanley and Baird) followed 

by N bound to S, N bound to C, and then hydride, the lowest priority.3,4 Thus, there are two 

enatiomers differing in  the absolute configuration of the metal. 

 

Clockwise, (R) 

 

 

Anticlockwise, (S) 
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3. Axial chirality 

We consider two atropisomers due to η6-p-cymene rotation around the M-(η6-p-cymene) bond. 

While the N,N’ chelate does not have the symmetry plane there are two possible rotamers 

characterised by axial chirality descriptors. Four groups given below according to decreasing 

priority define the chirality; hence, there are two enatiomers of different axial chirality: 
 

1. iPr (in the forward plane) 

2. Me (in the forward plane) 

3. NTs (behind the plane) 

4. NH2 (behind the plane) 

 

 

Ra axial chirality 

 

 

 

Sa axial chirality 
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4. Chelate ring chirality 

To understand the two most stable conformers of five-membered chelates rings, it is helpful to 

think of five-membered chelate rings as involving two components: 

 a planar L-M-L group, where L are the atoms directly attached to the metal, M 

 the remaining two ring atoms, E, which form a rigid E-E bar across the back of the 

chelate ring5,6  

λ chirality is the movement from the closer atom to its neighbour behind is clockwise. It is 

anticlockwise for δ. 

 

Inspection of the optimised structures shows that all have λ chirality as shown below: 

 

λ chirality 
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References for guidelines on chirality assignment 

 

Organic compounds 

1. E.L. Elliel, S. H. Wilen, Stereochemistry of organic compounds, John Wiley & Sons, 

Inc, 1994, ISBN 0-471-01670-5 

 

Inorganic complexes 

2. R. Kramer, Stereochemistry of Coordination Compounds, John Wiley & Sons Inc., 

1996, ISBN 0-471-95057-2 

 

Organometallic arene complexes 

3. C. Lecomte, et al., J. Organomet. Chem. 1974, 73, 67. 

4. K. Stanley, M. C. Baird, J. Am. Chem. Soc. 1975, 97, 6598. 

 

For chelate ring chirality 

5. C. J. Hawkins, Absolute Configuration of Metal Complexes, Wiley Interscience, New 

York, 1971 

6. J. Beattie, Acc. Chem. Res. 1971, 4, 253. 

 

 

 

 

Figure S1. Structure of the transition state for inversion of axial chirality of [M(p-

cymene)(TsDPEN-H)H]. The energy barrier for p-cymene rotation is > 20 kJ mol-1 between Sa 

and Ra. See PDB3. 
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(a) Metal = R, diamine = S,S, axial = Sa 

 

 

(b) Metal = R, diamine = S,S, axial = Ra 
 

 

 

Figure S2. Structure of the R-configured hydride complex [R-Ru(p-cymene)(S,S-TsDPEN-H)-

H] (with R metal chirality, Sa or Ra axial chirality, and S,S ligand chirality), showing the π-π 

interaction between the phenyl of acetophenone and the tosyl group of the catalyst. Notably, 

there is a significant interaction of the formed CO2 molecule with Ru-H, with a HˑˑˑC distance 

of ca. 2.6 Å. See PDB6. 
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Metal = R, diamine = (S,S), axial = Ra 

 

Figure S3. Model for the interaction of the C=O group of acetophenone with [Ru(η6-p-

cymene)(TsDPEN-H)H] with R metal chirality, Ra axial chirality and (S,S) ligand chirality. The 

(acetophenone) carbonyl oxygen C=OˑˑˑH2N (catalyst) distance is 2.126 Å, and the 

(acetophenone) carbonyl oxygen C=OˑˑˑH-N (catalyst) distance is 3.634 Å. See PDB25. 
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Figure S4. [R-M(p-cymene)(S,S-TsDPEN-H)H] with metal = R, diamine= S,S, axial = Sa 
(shown in Figure 3a). Cf. PDB1. 

 

Figure S5. [R-M(p-cymene)(S,S-TsDPEN-H)H] with metal = R, diamine= S,S, axial = Ra 
(shown in Figure 3b). Cf. PDB2. 

 

Figure S6. Transition state between [R-M(p-cymene)(S,S-TsDPEN-HH] with metal = R, 
diamine= S,S, axial = Ra / Sa (shown in Figure S1 of supplementary Information). Cf. PDB3. 

 

Figure S7 [M(η6-p-cymene)(TsDPEN-H)H] where metal = R, diamine = S,S showing 6 
coordination (shown in Figure 4a) (the same as PDB1). Cf. PDB4. 
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Figure S8 [M(η6-p-cymene)(TsDPEN-H)H] where metal = S, diamine = S,S showing 2 
coordination (shown in Figure 4b). Cf. PDB5. 

 

Figure S9 [R-Ru(p-cymene)(S,S-TsDPEN-H)H] metal=R, diamine = S,S, axial = Ra with 
acetophenone and CO2(shown in Figure S2). Cf. PDB6. 

 

Figure S10 Species A for ruthenium (shown in Figure 5) for Sa. Cf. PDB7. 

 

Figure S11 Species A for ruthenium (shown in Figure 5) for Ra. Cf. PDB8. 
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Figure S12 Species B for ruthenium (shown in Figure 5) for Sa. Cf. PDB9. 

 

Figure S13 Species B for ruthenium (shown in Figure 5) for Ra. Cf. PDB10. 

 

 

Figure S14 Species C for ruthenium (shown in Figure 5) for Sa. Cf. PDB11. 

 

Figure S15 Species C for ruthenium (shown in Figure 5) for Ra. Cf. PDB12. 
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Figure S16 Species D for ruthenium (shown in Figure 5) for Ra.Cf. PDB13. The remote CO2 
molecule is not shown. 

 

 

Figure S17 Species E for ruthenium (shown in Figure 5) for Ra (R-phenylethanol) with 
energy 7 kJ/mol. Cf. PDB14. 

 
 

Figure S18 Species E for ruthenium (shown in Figure 5) for Ra (S-phenylethanol) with 
energy 26 kJ/mol. Cf. PDB15. The remote CO2 molecule is not shown. 
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Figure S19 Species A for osmium (shown in Figure 7) for Sa. Cf. PDB16 

 

Figure S20 Species A for osmium (shown in Figure 7)  for Ra. Cf. PDB17. 

 

Figure S21 Species B for osmium (shown in Figure 7)  for Sa. Cf. PDB18. 

 

Figure S22 Species B for osmium (shown in Figure 7) for Ra. Cf. PDB19. 
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Figure S23 Species C for osmium (shown in Figure 7) for Sa. Cf. PDB20. 

 

Figure S24 Species C for osmium (shown in Figure 7) for Ra  Cf. PDB21 

 

Figure S25 Species D for osmium (shown in Figure 7) for Ra. Cf. PDB22 
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Figure S26 Species E for osmium (shown in Figure 7) for Ra with energy 7 kJ/mol. Cf. 
PDB23. The remote CO2 molecule is not shown. 

 

Figure S27 Species E for osmium (shown in Figure 7) for Ra with energy 26 kJ/mol. Cf. 
PDB24. The remote CO2 molecule is not shown. 

 

Figure S28 Species (iv) in Figure 11. An estimated transition state of the hydride transfer, 
corresponding to the structure in middle in Fig. 9. Cf. PDB25. The remote CO2 molecule is 
not shown. 

 

 

 

Figure S29 Species (iii) in Figure 11 Cf. PDB26. The remote CO2 molecule is not shown. 
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Figure S30 Another conformer of the [Ru(p-cymene)(S,S-TsDPEN-H)] / acetophenone 
assembly with the COˑˑˑHN hydrogen bonding (denoted with the dashed line). (shown in 
Figure 10). Cf. PDB27. The remote CO2 molecule is not shown. 

 

 

Figure S31 . Species (v) in Fig 11. Cf. PDB28. Remote CO2 molecule is not shown. 

 
 

 

 

 

 

 


