Supporting information

Self-assembly amphiphilic polysaccharide-based co-delivery system for egg white derived peptides and curcumin with oral bioavailability enhancement

Meng Yang, Jingbo Liu, Yajuan Li, Qi Yang, Xuanting Liu, Chunmei Liu, Sitong Ma, Boqun Liu, Ting Zhang, Hang Xiao and Zhiyang Du

a Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
b Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA

* Corresponding author, E-mail: dzy2635@163.com
Phone number: +86 18686407106
Methods

Transmission Electron Microscopy (TEM). TEM images were conducted with a Tecnai Spirit electron microscope (FEI, Netherlands). Each of sample solution was dropped onto a copper wire mesh and negatively stained by phosphotungstic acid in advance.

Atomic Force Microscopy (AFM). The AFM observation for samples was performed using a Veeco Nanoscope V Multimode 8 scanning probe microscope under the ambient conditions (25 °C, relative humidity of 25%). Prior to AFM scanning, 10 μL of each sample was dropped on the smooth mica sheets carefully and air-dried for 4 h.

X-ray Photoelectron Spectroscopy (XPS). The surface elemental composition of samples was detected by a Thermo ESCALAB 250Xi spectrometer (Waltham, MA) using an Al Kα X-ray excitation source. The high-resolution spectra were obtained at a 30.00 eV pass energy with a step size of 0.050 eV.

Fourier Transform Infrared Spectroscopy (FTIR). FTIR was performed to explore the interaction mechanism within the NPs. Different samples were freeze-dried in advance and then made into tablets at a specific mass ratio (sample:potassium bromide = 1:100). The corresponding spectra were recorded at a resolution of 4 cm⁻¹ over the 4000-400 cm⁻¹ range.

¹H NMR. Lyophilized samples were fully dissolved in deuterated dimethyl sulfoxide (DMSOd6) to reach a concentration of 5 mg/mL. Then, the ¹H NMR spectra was determined by a Bruker Advance III 500 MHz spectrometer (Billerica, MA). The chemical shifts were reported in ppm, respectively.

X-ray Diffraction (XRD). To better illustrate the co-encapsulation mechanism of EWDP and curcumin in NPs, freeze-dried samples were detected by an X-ray diffractometer (Bruker, Germany) with 40 kV accelerating voltage and 40 mA tube current. The 2θ angel range was set as 5-50° with a scanning rate of 0.24°/min.

Differential Scanning Calorimetry (DSC). DSC was performed to investigate the thermal properties and crystallinity of NPs. Samples were heated from 30 to 230 °C (10 °C/min) in the hermetically sealed aluminum pans with a nitrogen flow of 20 mL/min.

Cytotoxicity Assay Caco-2 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum, 1% nonessential amino acid and 1% penicillin-
streptomycin. The cells (90 μL) were seeded in the 96-well plates with a density of 8000 cells per well, respectively. After overnight incubation, the cells were exposed to the samples (10 μL) diluted in phosphate buffered saline (PBS) with different EWDP/curcumin concentrations for 24 h. Afterwards, 20 μL MTS solution was loaded to each well for 2 h (37 °C, 5% CO₂), and then the UV absorbance at 490 nm was recorded by a microplate reader (BioTek, Winooski, VT) to calculate the corresponding cell viability.
Fig. S1 The mass spectrum of EWDP (CYST). The corresponding b and y ions were shown in the spectrum.
Fig. S2 Zeta potential of native core-shell materials and solvent under various pH values (2.0-7.0).
Fig. S3 The size distribution of samples under different pH values (2.0-6.0). (a) HTCC-β-CD NPs. (b) HTCC-EWDP-β-CD-cur NPs.
Fig. S4 Images of samples under different pH values (2.0-7.0). (a) The simple mixture of EWDP and curcumin. (b) HTCC-β-CD NPs. (c) HTCC-EWDP-β-CD-cur NPs. The concentration of EWDP and curcumin for different samples was 0.5 mg/mL and 0.05 mg/mL.
Fig. S5 Schematic illustration of different protons distribution within the β-CD molecule.

Table S1 1H NMR analysis of β-CD protons’ chemical shifts within the composite NPs after encapsulation

<table>
<thead>
<tr>
<th>Protons</th>
<th>$\Delta\delta_{\text{HTCC-β-CD}}$</th>
<th>$\Delta\delta_{\text{β-CD-cur}}$</th>
<th>$\Delta\delta_{\text{HTCC-β-CD-cur}}$</th>
<th>$\Delta\delta_{\text{HTCC-EWDP-β-CD-cur}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>-0.001</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.020</td>
</tr>
<tr>
<td>H2</td>
<td>-0.001</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.021</td>
</tr>
<tr>
<td>H3</td>
<td>0.000</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.314</td>
</tr>
<tr>
<td>H4</td>
<td>0.003</td>
<td>0.000</td>
<td>-0.001</td>
<td>-0.002</td>
</tr>
<tr>
<td>H5</td>
<td>0.000</td>
<td>-0.006</td>
<td>-0.007</td>
<td>-0.024</td>
</tr>
<tr>
<td>H6</td>
<td>0.002</td>
<td>-0.005</td>
<td>-0.007</td>
<td>-0.020</td>
</tr>
</tbody>
</table>

$\Delta\delta = \delta_{\text{the corresponding NPs}} - \delta_{\text{β-CD}}$.
Fig. S6 Cytotoxicity evaluation for different samples. All the samples showed no significant cytotoxicity on Caco-2 cell after incubation for 24 h (cell viability ≥ 90%).
References

