Supporting Information

Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-Amylase and α-Glucosidase

Ying Li^{c,a}, Wei Liang^{a,c}, Meigui Huang^b, Wuyang Huang^{c,a}, Jin Feng^{c,a,*}

^a School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road,
 Zhenjiang 212013, China

^b Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
 ^c Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China

*Corresponding author: Jin Feng (Address: 50 Zhongling Street, Nanjing 210014, China. Tel: +86-25-84392334; Fax: +86-25-84392334; E-mail: fengjinzju@163.com).

		Monosaccharide composition								
Samples	Glucose	Fucose	Rhamnose	Xylose	Mannose	Fructose	Arabinose	Galactose	Galacturonic	Glucuronic
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	acid (%)	acid (%)
IDF	59.04 ± 1.36 a	$0.53\pm0.03\ c$	$3.24\pm0.25\ d$	$10.63\pm0.59~\text{c}$	$1.69\pm0.27\;c$	0.63 ± 0.10	$10.06 \pm 1.17 \text{ c}$	$4.37\pm0.32~\text{c}$	$9.45\pm0.59\;c$	$0.36\pm0.06\ b$
<i>h</i> CNC-600	$62.66\pm1.87~b$	$0.19\pm0.02\ b$	$2.21\pm0.17\ c$	$6.70\pm0.23~a$	$1.45\pm0.04\ b$	ND	$12.88\pm0.21\ d$	$3.27\pm0.12\ c$	$10.17 \pm 1.03 \ d$	$0.49\pm0.02\ c$
<i>h</i> CNC-400	$64.23\pm2.23\ b$	$0.15\pm0.01\ a$	$1.43\pm0.12\ b$	$15.71\pm0.34\ d$	$1.44\pm0.12\ b$	ND	$8.74\pm0.65\ b$	$2.23\pm0.17\ b$	$5.77\pm0.23\ b$	$0.30\pm0.02\ a$
<i>h</i> CNC-300	$71.92\pm1.76\ c$	$0.16\pm0.02\ a$	$1.09\pm0.07~a$	$10.38\pm0.43~\text{c}$	$1.62\pm0.21~\text{c}$	ND	$7.72\pm0.87\ a$	$1.81\pm0.22\ a$	$5.06\pm0.21~a$	$0.25\pm0.03\ a$
<i>h</i> CNC-200	$72.59\pm2.23~c$	$0.16\pm0.01\ a$	$1.19\pm0.13~a$	$9.71\pm0.43\ b$	$1.28\pm0.17~a$	ND	$7.31\pm0.29\ a$	$1.87 \pm 0.21 \ a$	$5.62\pm0.32\ b$	$0.27\pm0.04\ a$
ND: not detected.										
Different lowercase letters in the same column represent significant differences in chemical composition ($P < 0.05$).										

 Table S1. Monosaccharide composition of burdock IDF and hCNCs.

Fig. S1. Stem-Volmer plots describing α -Amylase (a-d) and α -Glucosidase (e-h) quenching induced by *h*CNC-600, *h*CNC-400, *h*CNC-300, and *h*CNC-200 at different temperatures.

Fig. S2. The plots of log of $(F_0-F)/F$ versus log [Q] for the interactions between *h*CNCs and α -Amylase (a-d) or α -Glucosidase binding (e-h) at different temperatures.

Fig. S3. The UV-Vis spectra (a, b), FT-IR spectra (c, d), and CD spectra (e, f) of pure α -Amylase or α -Glucosidase and in the presences of different *h*CNCs. The composition of the secondary structure was summarized in the sets in e and f, and different lowercase letters in the same column represent significant differences (P < 0.05).

Table S2. Kinetic parameters for α -Amylase inhibition in the presence of different *h*CNCs. Different lowercase letters in the same column represent significant differences (*P* < 0.05).

Sample	V _{max}	K _m	P ²	Inhibition type	
Батрк	(ΔA540/min)	(mM)	ĸ		
Control	$0.107 \pm 0.012 \; g$	$2.451\pm0.023~\text{c}$	0.991		
0.5 mg/ml of <i>h</i> CNC-600	$0.080 \pm 0.002 \ f$	$2.446\pm0.109~\text{c}$	0.997		
1.0 mg/ml of <i>h</i> CNC-600	$0.066\pm0.001~\text{c}$	$2.495\pm0.056\ c$	0.993	Noncompetitive	
0.5 mg/ml of <i>h</i> CNC-400	$0.069 \pm 0.002 \ d$	$2.118\pm0.214\ b$	0.999	Uncompetitive and	
1.0 mg/ml of <i>h</i> CNC-400	$0.051 \pm 0.003 \ a$	$1.956 \pm 0.102 \text{ a}$	0.999	noncompetitive	
0.5 mg/ml of <i>h</i> CNC-300	$0.075 \pm 0.004 \; e$	$2.497\pm0.051\ c$	0.997		
1.0 mg/ml of <i>h</i> CNC-300	$0.056\pm0.003~b$	$2.483\pm0.129\ c$	0.988	Noncompetitive	
0.5 mg/ml of <i>h</i> CNC-200	$0.073 \pm 0.006 \; e$	$2.830 \pm 0.129 \; d$	0.994	Competitive and	
1.0 mg/ml of <i>h</i> CNC-200	$0.063\pm0.005\ \text{c}$	$3.125 \pm 0.059 \ e$	0.999	noncompetitive	

Table S3. Kinetic parameters of α -Glucosidase inhibition in the presence of different *h*CNCs. Different lowercase letters in the same column represent significant differences (*P* < 0.05).

Sampla	V _{max}	K _m	R ²	Inhibition type	
Sample	(ΔA405/min)	(mM)			
Control	$0.198 \pm 0.012 \; h$	$10.09\pm0.323\ h$	0.991		
0.5 mg/ml of <i>h</i> CNC-600	$0.086 \pm 0.003 \ d$	$3.963 \pm 0.213 \; b$	0.996		
1.0 mg/ml of <i>h</i> CNC-600	$0.063\pm0.010\ b$	3.445 ± 0.123 a	0.995		
0.5 mg/ml of <i>h</i> CNC-400	$0.071\pm0.002~c$	$4.332\pm0.243~\text{c}$	0.999		
1.0 mg/ml of <i>h</i> CNC-400	0.051 ± 0.003 a	3.562 ± 0.156 a	0.996	Uncompetitive and	
0.5 mg/ml of <i>h</i> CNC-300	$0.148 \pm 0.021 \ g$	$8.785 \pm 0.231 \; g$	0.992	noncomponent c	
1.0 mg/ml of <i>h</i> CNC-300	$0.113 \pm 0.003 \ e$	$7.613 \pm 0.413 \ f$	0.996		
0.5 mg/ml of <i>h</i> CNC-200	$0.129 \pm 0.012 \ f$	$6.081 \pm 0.254 \ e$	0.997		
1.0 mg/ml of <i>h</i> CNC-200	$0.089\pm0.004\ d$	$4.963 \pm 0.189 \; d$	0.997		