Effects of different moisture content on structural and functional properties

cellulose with cell wall components in different citrus fibres.

Kaja Kristensen¹, George Warne¹, Deepa Agarwal^{*1,2}, Tim J. Foster¹

1 Division of Food, Nutrition, and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

2 The New Zealand Institute of Plant and Food Research, Plant & Food Research Canterbury Agriculture & Science Centre, Gerald St, Lincoln 7608, New Zealand.

*Corresponding author email: Deepa.Agarwal@plantandfood.co.nz

Supplementary Data:

Figure S1. Rheological properties of 2% w/w aqueous citrus fibre suspensions (CFS1-CFS6), where A) is the complex viscosity measured as a function of frequency at 0.2% shear strain, B) is the flow point and yield stress values taken at 1 Hz constant frequency from the amplitude sweeps. All values were measured at 20 ± 1 °C.

Supplementary Figure S2. Degree of crystallinity for the citrus fibre samples (CFS1-CFS6), where A) low moisture and B) medium moisture. The plots are illustrated as the average values of two replicates \pm standard deviations.

Supplementary Figure S3. Thermogravimetric curves of samples A) CFS1 & CFS2, B) CFS3 & CFS4, and C) CFS5 & CFS6, where solid lines represent samples with low moisture (5-7% w/w), and dashed lines represent samples with medium moisture (14-17% w/w).

Supplementary Tables:

Table S1. Absorbance band assignment according to Boeriu, Bravo, Gosselink, & van Dam (2004), Carrillo, Colom, Suñol, & Saurina (2004), Célino, Gonçalves, Jacquemin, & Fréor (2014), Olsson & Salmén (2004), and Poletto, Júnior, & Zattera (2014).

Wave number (cm ⁻¹)	Assignment	Component
3600-3300	-OH stretching	Carbohydrate, lignin
2900-2855, 1360-1310	-CH, -CH ₂ , -CH ₃ stretching	Carbohydrate, lignin
1730	C=O stretching	Pectin, hemicellulose
1620	C=O, C=C, -OH stretching	Carbohydrate, lignin
1600, 1500, 1260	Aromatic ring vibration	Lignin
1415	-CH, COO ⁻ vibration	Carbohydrate, lignin
1230	C=C, C=O, C-O vibration	Lignin, pectin, hemicellulose
1150-1020	R-O-R, C-O stretching	Carbohydrate, lignin
890	β-links	Cellulose

Table S2. Peak areas at 1595, 1509, 1275, and 1220 cm⁻¹ for the citrus fibre samples (CFS1-CFS6) in low moisture (LM) and medium moisture (MM) systems. Data are presented as the mean value of five replicates \pm standard deviations.

	Peak area at	Peak area at 1509	Peak area at 1275	Peak area at
	1595 cm ⁻¹	cm ⁻¹	cm ⁻¹	1220 cm ⁻¹
Lignin ¹	2.61±0.49	1.94±0.45	2.15±0.57	2.83±0.68
CFS1LM	0.91±0.23	0.53±0.19	1.26±0.36	0.81±0.29
CFS1MM	$1.64{\pm}0.20$	0.80±0.13	1.32±0.26	0.66±0.21
CFS2LM	0.72±0.13	0.25±0.09	0.86±0.18	0.43±0.16
CFS2MM	1.27 ± 0.54	0.45±0.26	$0.84{\pm}0.511$	0.29±0.23
CFS3LM	0.82±0.35	0.37±0.27	0.95±0.53	$0.77{\pm}0.50$

CFS3MM	1.88±0.29	0.99±0.17	2.01±0.39	1.61±0.37
CFS4LM	0.57±0.15	0.27±0.12	0.82±0.23	0.43±0.19
CFS4MM	1.20±0.28	0.40±0.21	0.88±0.35	0.29±0.25
CFS5LM	0.42±0.10	0.08±0.06	0.77±0.17	0.35±0.13
CFS5MM	1.30±0.19	0.33±0.11	1.33±0.24	0.49±0.18
CFS6LM	0.67±0.24	0.28±0.17	0.71±0.32	0.59±0.30
CFS6MM	2.19±0.16	0.48±0.12	1.38±0.19	0.80±0.17

¹Lignin was obtained from Sigma-Aldrich (Gillingham, UK).

Quantification of the peak areas at 1595 (1610-1579), 1509 (1524-1495), 1275 (1290-1260), and 1220 (1234-1206) cm⁻¹ was adapted from Huang et al. (2012) (Table S2). Peak areas were baseline corrected using asymmetric least squares regression in OriginPro 9.8.0.200 (OriginLab Corporation, USA). The following parameters were used: Asymmetric factor (0.0001), Threshold (0.005), Smoothing factor (6.5), and Number of iterations (10). Peak areas were identified through OriginPro at these specified wavelengths with \pm 15 cm⁻¹.

Table S3. Loadings of infrared vibration data on PC-1 and PC-2.

	Positive loadings	Negative loadings
PC-1	2880, 2855, 1450, 1269, 1088	3626, 3453, 3262, 3082, 1651
PC-2	3697, 3120, 1724, 1450, 907	3406, 2829, 1179

Table S4. Derivative thermogravimetric peak temperatures and mass loss rates for the citrus fibre samples (CFS1-CFS6) in low moisture (LM) and medium moisture (MM) systems.

Starting point		Moisture peak		Pectin peak ¹		Cellulose peak ²	
Temp.	Mass	Temp.	Mass	Temp.	Mass	Temp.	Mass
(°C)	loss rate	(°C)	loss rate	(°C)	loss rate	(°C)	loss rate
	(mg·s ⁻¹)		$(mg \cdot s^{-1})$		(mg·s ⁻¹)		(mg·s ⁻¹)

CFS1LM	23.0	9.73.10-5	93.4	1.45.10-3	-	-	336	1.75.10-2
CFS1MM	23.1	1.84.10-4	86.8	2.87.10-3	-	-	336	1.32.10-2
CFS2LM	23.0	1.15.10-4	92.3	2.14.10-3	-	-	337	1.83.10-2
CFS2MM	23.1	2.16.10-4	84.3	2.83.10-3	-	-	338	1.17.10-2
CFS3LM	23.4	1.10.10-4	92.1	2.04.10-3	259	6.48.10-3	342	1.47.10-2
CFS3MM	23.1	2.04.10-4	87.2	3.17.10-3	259	2.87.10-3	342	1.08.10-2
CFS4LM	23.2	7.53.10-5	93.2	1.65.10-3	-	-	339	1.82.10-2
CFS4MM	23.0	2.66.10-4	84.0	3.03.10-3	-	-	339	1.14.10-2
CFS5LM	23.1	5.54.10-5	92.1	9.09.10-4	-	-	343	1.38.10-2
CFS5MM	23.1	2.05.10-4	91.2	3.43.10-3	-	-	344	1.44.10-2
CFS6LM	23.2	8.34.10-5	96.9	2.03.10-3	236	3.82.10-3	343	1.88.10-2
CFS6MM	22.7	2.40.10-4	90.8	4.98.10-3	236	3.36.10-3	343	1.70.10-2

¹ The pectin peak was identified as the local peak maximum between 200 °C and 286 °C for the CFS3 samples or between 200 °C and 256 °C for the CFS6 samples.

² The cellulose peak was identified as the local peak maximum between 300-450 °C.

Table S5. *GAB model parameters for the citrus fibre samples (CFS1-CFS6) at room temperature.*

	$M_0 (g/100 g)^1$	C^2	K ²	R ²
CFS1	6.14	10.9	0.79	0.9994
CFS2	5.10	23.3	0.83	0.9970
CFS3	5.84	13.6	0.79	0.9997
CFS4	5.07	22.5	0.83	0.9982
CFS5	4.89	19.8	0.81	0.9981
CFS6	5.88	22.2	0.80	0.9962
				1

 $^{I}M_{0}$ is the moisture content in the monolayer (g water/100 g dry solids).

 ^{2}C and *K* are temperature-dependent constants.