Supplementary Material

A comprehensive investigation on chemical diversity and efficacy

of different parts of Ligusticum chuanxiong

Hongling Yan^a, Yinlin Zhou^a, Fei Tang^a, Chengjiu Wang^a, Jing Wu^a, Changjiang Hu^{a,b}, Xiaofang Xie^{a*}, Cheng Peng^{a*}, Yuzhu Tan^{a*}

a Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

b Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co. Ltd., Pengzhou 611930, China

* Co-corresponding author at: Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Tel.: +86 028-61800231. E-mail Address: <u>tanyuzhu@cdutcm.edu.cn (Y.Z. Tan*); pengchengchengdu@126.com</u> (C. Peng*); xxf14544@163.com (X.F. Xie*).

Supplementary results

1. Identification of other phthalides

1.1 Identification of phthalide monomers

Peaks **46** and **51** presented similarly in its MS/MS spectrum a molecular ion at m/z 189.10 [M+H]⁺ and the followed by its fragments at m/z 171.08 [M+H-H₂O]⁺, 153.07 [M+H-2H₂O]⁺, 143.09 [M+H-H₂O-CO]⁺ and 117.07 [M+H-CO₂-C₂H₄]⁺, in which peak **51** was identified as *Z*-butylidenephthalide in comparison with the reference material. The peak **46** has shorter retention time than peak **51** and was deduced as *E*- butylidenephthalide¹.

Peaks **38** and **40** produced molecular ions at m/z 193.12 [M+H]⁺ and the higher intensity fragment ion at m/z 137.06 which was came from the losing of C₄H₈ and indicated the presence of 3-butyl substitution. Peak **38** was identified as senkyunolide A by reference components and literature data comparison^{2,3}, while peak **40** was preliminarily identified as 3-butyl-5,6-dihydro-4H-isobenzofuran-1-one by internal database.

A total of four peaks (peaks **10**, **42**, **45** and **49**) were extracted by molecular ion at m/z 195.14 [M+H]⁺, and all of them generated the highest characteristic fragment ion at m/z 149.13 [M+H-H₂O-CO]⁺. Four candidate structures were found by internal database search, including 3-carboxyethyl-phthalide (hydroxyl phthalide), cnidilide, neocnidilide and isocnidilide. Peak **10**, whose retention time was significantly shorter than other peaks, was identified as 3-carboxyethyl-phthalide (hydroxyl phthalide). Peaks **42**, **45** and **49** were tentatively identified as neocnidilide, cnidilide^{1,3}.

Peak **55** with the molecular ion at m/z 197.15 [M+H]⁺ and further produced the fragment ions at m/z 179.14 and m/z 151.15, corresponding to the neutral losses of H₂O and CO. According to search in internal database, it was matched with 3-butylhexahydro-1(3H)-isobenzofuranone.

The four isomers (peaks **26**, **30**, **33** and **35**) exhibited molecular ion at m/z 205.09 [M+H]⁺. Among them, peaks **30** and **33** were precisely identified as senkyunolide C and 4-hydroxy-butylidenephthalide by reference materials, which both generated the product ions at m/z 187.08 ([M+H-H₂O]⁺), 169.06 ([M+H-2H₂O]⁺) and 159.08 ([M+H-H₂O-CO]⁺). Peak **26** produced the fragment ions at m/z 149.06 ([M+H-CH₃CHCO]⁺) and 103.05 ([M+H-C₃H₆O-CO2]⁺), indicating that the structure of peak **26** might contains 9-OH substitution, and compared with reference material was identified as senkyunolide E. Peak **35** has the same MS² fragment as peaks **30** and **33**, but the retention time was longer. By the internal database, it was identified as 7-OH substituted *Z*-butylidenephthalide, known as senkyunolide B.

Peaks **16**, **21**, **23**, **28** and **29** were five isomers with the molecular ion at m/z 207.10 [M+H]⁺. The retention time and mass spectrum fragments of peak **23** were consistent with the standard substance senkyunolide F, which was confidently identified as senkyunolide F. The molecular ion of peak **29** has the highest intensity, and further

generated the fragment ion at m/z 165.09 [M+H-H₂O-CO]⁺. Those mass spectrum characteristic was consistent with literature data, hence peak **29** was inferred as 6,7-exoxyligustilide⁴. Peak **16** has a shorter retention time than other peaks, and without fragmentation ion at m/z 151.04. It was speculated that the hydroxyl group substitution might be in the side chain, and peak **16** was vaguely identified as 3-(3-Hydroxybutyl)-1(3H)-isobenzofuranone. Peaks **21** and **28** produced the fragment ions at m/z 161.10 ([M+H-H₂O-CO]⁺) and 151.04 ([M+H-C₄H₈]⁺), corresponding to 3-butyl substitution, so the hydroxyl group substituted hydrogen on the benzene ring. Searching in the internal database, peaks **21** and **28** were identified as 5-hydroxy-3-butylphthalide and 4-hydroxy-3-butylphthalide.

Peaks **20**, **22** and **25** all presented a molecular ion at m/z 209.12 [M+H]⁺. Peaks **20** and **22** produced product ions at m/z 191.11 ([M+H-H₂O]⁺), 163.11 ([M+H-H₂O-CO]⁺), 153.05 ([M+H-C₄H₈]⁺)and 145.10 ([M+H-2H₂O-CO]⁺). The exact mass and the neutral loss of C₄H₈ provided a demonstration the existence of 3-butyl group and the same time a hydroxyl group attached to the ring (Table S3). Their most main difference was the intensity of fragment ion at m/z 153.05, in which peak **20** exhibited higher intensity than peak **22**. Combining the alternative structure, we surmised that there may be a 3-OH in the structure of peak **20**, which was more conducive to the formation of C⁺ ion after the removal of C₄H₈. The above results were similarly to the characteristics of mass spectrum fragments of senkyunolide K and senkyunolide G in the literature, so we identified peaks **20** and **22** as senkyunolide K and senkyunolide G, respectively². Peak **25** was 2H more than 6,7-exoxyligustilide, which could be observed from their mass difference in their precursor ions and product ions, and was tentatively inferred as (4Z)-4butylidenehexahydrooxireno[e]isobenzofuran-6(1aH)-one by internal database.

Three isomers (peaks **5**, **13** and **15**) with the same molecular formula of $C_{12}H_{18}O_3$ exhibited precursor ion at m/z 211.13 [M+H]⁺. Among them, peak **5** was identified as (3*S*,3*aR*,10*R*)-(-)-10-hydroxysedanolide by comparing with the MS/MS spectrum of reference material. Different from peak **5**, the m/z 119.09 fragment ion appeared in peaks **13** and **15**, which was caused by the neutral loss of $2H_2O$ and C_4H_8 , indicating that the hydroxyl substitution occurred in the six-membered ring. Combining with the retention time of peaks **13** and **15** and the candidate structures in the internal database, we tentatively labeled them as (3*S*,3*aR*,4*R*)-4-hydroxy-sedanolide and (3*S*,3*aR*,6*S*)- -6-hydroxy-sedanolide respectively.

The peak **43** with molecular ion at m/z 219.10 [M+H]⁺, which was 30 Da more than *Z*-butenylphthalide, and it was speculated that there was an additional OCH₃ substitution. The further fragment ion at m/z 204.08 [M+H-CH₃·]⁺, 186.07 [M+H-H2O-CH₃·]⁺ and 158.07 [M+H-H₂O-CO-CH₃·]⁺ were related to the loss of CH₃ radical, so it is speculated that OCH₃ substitution might be in the benzene ring. The speculated structure was searched in SCIFinder, and four potential structures were found, among which only (3*Z*)-3-butylidene-4-methoxy-1(3H)-isobenzofuranone came from natural products and was preliminarily matched with peak **43**.

Five isomers (Peaks **3**, **6**, **12**, **18** and **19**) produced the molecular ion at m/z 223.10 [M+H]⁺ shown its theoretical molecular formula were C₁₂H₁₄O₂. Peak **19** exhibited the fragment ion at m/z 177.05 ([M+H-H₂O-C₂H₄])⁺, 135.04 ([M+H-H₂O-C₄H₆O])⁺, and 117.07 ([M+H-2H₂O-C₄H₆O])⁺ was identified as senkyunolide D^{3,6}. Peaks **12** and **18** both provided the fragment ion at m/z 149.02 ([M+H-H₂O-C₄H₆O])⁺, inferred that the possession of 3-butyl substitution. Based on the internal database, peaks **12** and **18** were ambiguously identified as 3-butyl-4,7-dihydroxyphthalide or 3-butyl-6,7-dihydroxyphthalide. Peaks **3** and **6** both appeared the fragment ion at m/z 205.09 ([M+H-H₂O])⁺ and m/z 149.06 ([M+H-H₂O-CO-C₂H₄])⁺, inferring that there might contain 3-butenyl group. According to the internal database, peaks **3** and **6** were ambiguously identified as (3Z)-3-butylidene-4,5-dihydroxy-1(3H)-isobenzofuranone or (3Z)-3-butylidene-4,5-dihydroxy-1(3H)-isobenzofuranone.

Peaks **1**, **2** and **8** produced the same mass spectrometry fragments, including molecular ion at m/z 227.13 ([M+H])⁺, and product ions at m/z 209.12 ([M+H-H₂O])⁺ and 153.05 ([M+H-H₂O-C₄H₈])⁺, which were consistent with the mass spectrum characteristics of senkyunolide J/N reported in the literature⁵. So peak **1**, **2** and **8** were unambiguously identified as senkyunolide J, senkyunolide N or their steric isomer chuanxiongnolide R2.

Peaks **11** and **27** both were found the molecular ion at m/z 237.08 [M+H]⁺. According to the structural characteristics of the phthalides, they were presumed to be butenylphthalide with three hydroxyl substitutions. A further fragment ion at m/z 191.03 ([M+H-H₂O-C₂H₄])⁺ implied that all three hydroxyl substituents are on the benzene ring. A candidate component, (*Z*)-3-butylidene-4,5,6-trihydroxy-1(3H)-isobenzofuranone was found in SciFinder based on the speculated structure. Therefore, peaks **11** and **27** were tentatively identified as (*Z*)-3-butylidene-4,5,6-trihydroxy- 1(3H)-isobenzofuranone and (*E*)-3-butylidene-4,5,6-trihydroxy-1(3H)-isobenzofuranone.

Peak **14** has a formula of $C_{13}H_{16}O_4$ (m/z 237.11 [M+H]⁺), was identified as (+)-(R)-3-butyl-7-hydroxy-3-methoxyphthalide matched in internal database. The fragment ion at m/z 205.09 ([M+H-CH₃OH])⁺ was produced by *r*-H rearrangement of H-8 and removal of CH₃OH, and further generated the fragment ion at m/z 177.09 ([M+H-CH₃OH-CO])⁺ and 163.04 ([M+H-CH₃OH-C₃H₆])⁺.

Peak **7** with precursor ion at m/z 239.09 [M+H]⁺, exhibited major fragment ions at m/z 203.07 ([M+H-H₂O])⁺, 179.03 ([M+H-H₂O-C₃H₆])⁺, and 165.02 ([M+H-C₄H₈])⁺. Based on the aforementioned information and internal

database, peak 7 was tentatively assigned as (3R)-3-butyl-3,6,7-trihydroxy-1(3H)-isobenzofuranone.

Peak **32** produced molecular ion at 243.08 $[M+H]^+$ corresponding to the molecular formula $C_{12}H_{15}O_3CI$ and only one compound with this molecular formula was found in the internal database, known as senkyunolide L. The MS/MS fragment ion at m/z 207.10 was generated from the neutral loss of HCl, and the product ions produced by further fragmentation were consistent with that of 6,7-exoxyligustilide, including fragment ions at m/z 189.09, 161.10, 119.09, et al. Therefore, peak **32** was deduced as senkyunolide L⁵.

Three isomers (peaks **31**, **34** and **36**) generated precursor ion at m/z 279.16 [M+H]⁺, which suggested that their molecular formular were $C_{16}H_{22}O_4$, and speculated that their structures maybe contain a hydroxyl and a methoxyl substituent according to the structural characteristics of phthalides (Table S3). Among them, peaks **31** and **34** appeared a characteristic fragment at m/z 191.11, which produced by the neutral loss of H₂O and C₄H₆O. In addition, other common fragments were observed, such as m/z 233.15 ([M+H-H₂O-CO])⁺, 145.10 [191-H₂O-CO]⁺ and 117.07 [191-H₂O-CO-C₂H₄]⁺, which were consistent with the mass spectrum characteristics of senkyunolide M/Q reported in the literature^{1,6}. Since the peaks **31** and **34** were provisionally assigned as senkyunolide M or senkyunolide Q. While peak **36** also has those common fragments above but no the characteristic fragment at m/z191.11, it was suggested that the position of double bond at peak **36** was differed from peaks **31** and **34**. We speculated that there is a 6,7-alkene that prevents further disconnection of 6-COC₃H₇ and 7-OH. There is no compound with this structure in SciFinder, therefore, peak **36** was a potential new compound, named as 3-butyl-4,5-dihydro-7-hydroxy-6-(1-oxobutyl)-1(3H)-isobenzofuranone.

The peak **37** produced a precursor ion at m/z 177.09 [M+H]⁺, which was 14 Da less than ligustilide, and came into being the neutral lost fragments of H₂O and CO as same as *Z*-ligustilide. Hence, we speculatd that peak **37** was a demethylated ligustilide, assigned as (*Z*)-propylidene phthalide by internal database. Similarly, the formulas for peak **17** (C₁₁H₁₄O₂, m/z 179.11) and **24** (C₁₁H₁₆O₂, m/z 181.12) were one methylene (14 Da) less than those for senkyunolide A and neocnidilide, respectively, and resulting in corresponding neutral loss of H₂O and CO. So peaks **17** and **24** were provisionally identified as (3*Z*)-4,5,6,7-tetrahydro-3-propylidene-1(3H)-isobenzofuranone and (3*R*,3a*R*)-3a,4,5,6-tetrahydro-3-propyl-1(3H)-isobenzofuranone respectively, the structures could be searched in SClfinder.

1.2 Identification of phthalide dimers

Peak **70** presented precursor ions at m/z 379.19 [M+H]⁺ and m/z 396.22 [M+NH₄]⁺ and was exactly assigned as 4,5-dehydrodiligustilide by comparison with the retention time and mass spectrometry of the reference material.

There were 12 isomers (peaks **59**, **60**, **66**, **71**, **73**, **74**, **78**, **81**, **83**, **84**, **86** and **91**) owning molecular ion at *m/z* 381.20 [M+H]⁺ and all of them presented the characteristic ion at *m/z* 191.11 with highest abundance, suggesting that their structure formed by the polymerization of two ligustilide. Among them, peaks **74**, **78**, **83** and **91** were identified as levistolide A, (3*Z*)-(3a*R*,6*S*,3'*R*,8*S*)-3a.8',6.3'-diligustilide, tokiaerialide and Z,Z'-3.3'a,7.7'a-diligustilide according to reference materials. The retention time of peaks **71** and **73** was close to that of peak **74**, so it was speculated that they were stereoisomers with the same polymerization mode. Combining with the literature data, they were tentatively identified as levistolide B and senkyunolide O⁴. Peak **84** has the close retention time and almost same mass spectrum fragment behavior compared with peak **83**, suggesting that peak **84** is the stereoisomer of peak **83**, a potential new compound, named as Cl-1. The retention time of peak **84** was between peak **84** (3a.8',7a.3') and peak **91** (3a.7a',7a.3a'), according to above mentioned structure retention relationship of candidate compounds, it was tentatively assigned to neodiligustilide (3a.3',7a.8'). Similarly, peak **81** was identified as tokinolide A (3a.7',7a.6'). The other three peaks **59**, **60** and **66**, have shorter retention time and were tentatively matched to riligustilide, *Z*,*Z*'-3,3',8,8'-diligustilide and angelicolide, which could not be accurately identified due to the lack of reference materials.

Peaks **57**, **61**, **62**, **63**, **65**, **75**, **77**, **80**, **82** and **87** produced the molecular ions at m/z 383.22, and the DPIs at m/z 191.11 and 193.12, suggested that they were ten isomers and all combined by the polymerization of *Z*-ligustilide and senkyunolide A. Except for peak **87**, the other nine peaks showed the highest intensity fragment ions at m/z 191.11. In the current literature, only five phthalide dimers in accordance with above exact mass were reported with clear absolute configurations in plants of umbelliferae, i.e., chuanxiongdiolide R6, chaxiongnolide F, (*Z*)-3,8-dihydro-6,6',7,3'a-diligustilide, 3,8-dihydro-levistilide A and senkyunolide P. Unfortunately, as the reference material in this study, chuanxiongdiolide R6 was not detected in any part of L. *chuanxiong*. Peaks **61** and **65** presented a higher response, which were putatively identified as (*Z*)-3,8-dihydro-6,6',7,3'a-diligustilide and senkyunolide P based on the literature data, respectively ⁷. The characteristic ion at m/z 191.11 in peak **87** was a non-base peak ion as same as reference substance chuanxiongdiolide R6, It was speculated that peak **87** has a relatively stable structure and may be the trans-isomer of chuanxiongdiolide R6 (3a.3a',7a.7a'), that was, it has the polymerization mode of 3a.7a',7a.3a', was named as DI-6. The MS/MS spectrum of peak **62** was consistent with peak **61**, was identified as 3,8-dihydro-levistilide A⁵, the stereoisomer of (*Z*)-3,8-dihydro-6,6',7,3'a-diligustilide. Peak **82** produced a product ion at m/z 225.16 [M+H-C₆H₈O₂-H₂O-CO]⁺, corresponding the neutral loss of C₆H₈O₂ in

Z-ligustilide and H₂O and CO in senkyunolide A. It was deduced that the form of polymerization was 3a.7',7a.6', and was provisionally identified as chaxiongnolide F⁴. The rest 5 peaks (**57**, **63**, **75**, **77** and **80**) have no candidate structure to assign, were potential new compounds, named as DI-1~5.

Peak **68** presented a precursor ion at m/z 395.19 [M+H]⁺, which was 16 Da (O) more than 4,5dehydrodiligustilide. The MS/MS spectrum showed dominant product ions at m/z 191.11 [M+H-C₁₂H₁₂O₃]⁺ and 205.09 [M+H-C₁₂H₁₄O₂]⁺, corresponding to the depolymerization of the phthalide dimer in the MS/MS spectra. Thus, it was inferred that its structure type is BII (Table S4). So far, no compound with similar structure has been reported, so it was speculated that this is a potential new compound, named as BII-1.

Two isomers (peaks **50** and **56**) have a molecular ion at m/z 397.20 [M+H]⁺, which were presumed to be the monomer polymerization of a *Z*-ligustilide and a hydroxy-substituted *Z*-ligustilide (Table S4). Among them, peak **50** provided the highest intensity fragment ion at m/z 191.11, and further product ions at m/z 173.10 [191.11-H₂O]⁺ and 145.10 [191.11-H₂O-CO]⁺, corresponding to the structural fragment of *Z*-ligustilide. In accordance with accurate mass and structure feature were reported in the literature, peak **50** was identified as chuanxiongnolide A/B⁸. The another compound provided more fragment ions at m/z 361.18 [M+H-2H₂O]⁺, 307.17 [M+H-2H₂O-CO-C₂H₂]⁺ and 253.12 [M+H-2H₂O-CO-C₂H₂-C₄H₆]⁺, and was considered to be different linking pattern between the monomers. Based on the neutral loss of C₂H₂ and C₄H₆, which formed by the undergo RDA cleavage of two sixmembered rings, it was speculated that peak **56** is a potential new compound with the polymerization sites of 3.7', 8.6', named as CII-1.

The phthalide dimer with molecular formula $C_{24}H_{30}O_5$ has two types of monomer binding, DII and CV (Table S4). In this experiment, four isomers, including peaks 53, 54, 64 and 76, were found to have this molecular ion at m/z 399.22 [M+H]⁺ based on the mass spectrum fragment information. Compared with the other two peaks, peaks 53 and 54 have shorter retention time and stronger abundance of fragment ions at m/z 335.20 ([M+H-HCOOH]⁺), which were considered as CV type. Peaks 64 and 76 were considered as DII type on the contrary. The fragment ions and its intensity generated by peak 54 were consistent with that of levistolide A (CI), including m/z 381.20 [M+H-H₂O]⁺, 353.21 [M+H-H₂O-CO]⁺ and 191.11 [M+H-C₁₂H₁₆O₃]⁺, etc. Therefore, it was speculated that of peak 54 has the same polymerization mode as levistolide A. Combining with literature data¹, peak 54 was accurately identified as demethywallichilide. The rest three compounds might be potential new compounds because no candidate structures have been found in internal database. Peak 53 produced product ions at m/z 363.18 [M+H- $2H_2O$]⁺, 309.18 [M+H-2H₂O-CO-C₂H₂]⁺, and 253.12 [M+H-2H₂O-CO-C₂H₂-C₄H₆]⁺, which neutral lost was similarly to the MS/MS spectrum of peak 56, suggesting that they had the same polymerization mode, assigned as CV-1. Except to the DPI at m/z 191.11, the characteristic ion at m/z 207.10 was also found in peak 64, corresponding to a hydroxyl phthalide fragment, which further proved that it was the structural type of DII. Peak 64 was labeled as DII-1. However, due to the limited reference materials, it was not possible to further infer the connection mode between the two monomers and the position of substituents. The mass spectrogram of peak 76 was also inconsistent with peak 64, indicating differences in the monomer polymerization mode or the position of substituents. Peak 76 was labeled as DII-2.

Peak **79** provided the quasi-molecular ion at m/z 401.23 [M+H]⁺, and was more than 16 Da than chuanxiongdiolide R5. In addition, peak **79** presented the highest intensity fragment ion at m/z 191.11, a *Z*-ligustilide fragment, suggesting that its monomer polymerization type was EII (Table S4). Two candidate structures were matched from an internal database based on molecular formula retrieval. Interestingly, both of candidate structures were FII types, which were different from peak **79**. What's more, the retention time of F-type phthalide dimer is usually shorter than that of E-type phthalide dimer, while the retention time of peak **79** was longer than that of peak **58** (EI), which was obviously unreasonable to consider as FII type. Therefore, peak **79** was identified as a potential new compound with the EII structure type, labeled as EII-1.

Peaks **69** and **72** were extracted from the TIC chromatogram of QC sample corresponding to the molecular ion at m/z 413.23 [M+H]⁺. They both produced high intensity fragment ions at m/z 191.11 [M+H-C₁₃H₁₉O₃]⁺ and m/z 223.13 [M+H-C₁₂H₁₅O₂]⁺, corresponding to the depolymerization of the phthalide dimer in the MS/MS spectra. Meanwhile, the peak **72** produced more product ions at m/z 353.17 [M+H-CH₃COOH]⁺, 307.17 [M+H-CH₃COOH-H₂O-CO]⁺ and 251.11 [M+H-CH₃COOH-H₂O-CO-C₄H₈]. They were presumed to be a pair of isomers of CIV type with different monomer polymerization method (Tab. S4). Among them, peak **69** showed higher response signal and was temporarily identified as wallichilide¹, while peak **72** was accurately identified as methyl ester derived from angeolide by comparing with the MS/MS spectra and retention time of reference material.

Peaks **39**, **47** and **52** presented the molecular ions at m/z 415.21 [M+H]⁺ and 432.24 [M+NH₄]⁺, corresponding to a molecular formula of C₂₄H₃₀O₆. In addition, they provided the DPIs at m/z 191.11 or 193.12, corresponding to the depolymerization of the phthalide dimer, as well as the highest intensity fragment ion at m/z 119.09 [193.12-C₄H₃-H₂O]⁺, corresponding to a product ion of senkyunolide A. According to the structural features and molecular formula of the phthalide dimer, they were inferred to be DIII type (Table S4). A candidate compound, chuanxiongnolides L5⁹, was matched from the internal database. Due to the lack of reference material and more

detailed MS/MS data, it was difficult to identify them more accurately. Peaks **39**, **47** and **52** were deduced as chuanxiongnolide L5 or its isomers.

Reference:

- Q. Zhang, M. Wang, Q. Wang, H. Zhao, Z. Zhang, H. Yu, Y. Liu, S. Fu, Z. Lu, Z. Huang, Z. Xie, X. Gao and Y. Qiao, Characterization of the potential new phthalides in Ligusticum chuanxiong Hort. using ultra-performance liquid chromatography coupled with quadrupole time of flight tandem mass spectrometry. *J Sep Sci*, 2017, 40, 2123–2130.
- 2 S. L. Li, S. S. Chan, G. Lin, L. Ling, R. Yan, H. S. Chung and Y. K. Tam, Simultaneous analysis of seventeen chemical ingredients of Ligusticum chuanxiong by on-line high performance liquid chromatography-diode array detector-mass spectrometry. *Planta Med*, 2003, **69**, 445–451.
- 3 A. Zuo, L. Wang, H. Xiao, L. Li, Y. Liu and J. Yi, Identification of the absorbed components and metabolites in rat plasma after oral administration of Rhizoma Chuanxiong decoction by HPLC-ESI-MS/MS. *J Pharm Biomed Anal*, 2011, **56**, 1046–1056.
- 4 Q. Zhang, M. Huo, Y. Zhang, Y. Qiao and X. Gao, A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case. *J Chromatogr A*, 2018, **1552**, 17–28.
- 5 J. Liu, M. Wang, L. Chen, Y. Li, Y. Chen, Z. Wei, Z. Jia, W. Xu and H. Xiao, Profiling the constituents of Dachuanxiong decoction by liquid chromatography with high-resolution tandem mass spectrometry using target and nontarget data mining. *J Sep Sci*, 2019, **42**, 2202–2213.
- 6 X. Chen, Z. Lou, H. Zhang, G. Tan, Z. Liu, W. Li, Z. Zhu and Y. Chai, Identification of multiple components in Guanxinning injection using hydrophilic interaction liquid chromatography/time-of-flight mass spectrometry and reversed-phase liquid chromatography/time-of-flight mass spectrometry. *Rapid Commun Mass Spectrom*, 2011, **25**, 1661–1674.
- 7 X. L. Zhang, L. F. Liu, L. Y. Zhu, Y. J. Bai, Q. Mao, S. L. Li, S. L. Chen and H. X. Xu, A high performance liquid chromatography fingerprinting and ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry chemical profiling approach to rapidly find characteristic chemical markers for quality evaluation of dispensing granules, a case study on Chuanxiong Rhizoma. *J Pharm Biomed Anal*, 2014, **88**, 391–400.
- 8 Y. H. Li, S. L. Peng, Y. Zhou, K. B. Yu and L. S. Ding, Two new phthalides from Ligusticum chuanxiong. *Planta Med*, 2006, **72**, 652–656.
- 9 W. Wei, X. W. Wu and X. W. Yang, Novel phthalide derivatives from the rhizomes of Ligusticum chuanxiong and their inhibitory effect against lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. *RSC Adv*, 2016, **6**, 61037-61046.

Supplementary Figures

Fig. S1 In the positive ion mode, the TIC chromatogram of QC sample by UHPLC/Q-Orbitrap MS Analysis (I) and EIC chromatogram of each compound (II).

Fig. S2 Assignment of the identified peaks in GC-MS TIC chromatograms in QC sample

of volatile oil

Fig. S3 Score scatter plots and validation plots of OPLS-DA for volatile oil and methanol extract from three parts of CX. OPLS-DA for X/G, Y/G and Y/X comparative groups of volatile oil, respectively (a-c). Validation plots of OPLS-DA for X/G, Y/G and Y/X comparative groups of volatile oil, respectively (d-f). OPLS-DA for X/G, Y/G and Y/X comparative groups of methanol extract, respectively (g-i). Validation plots of OPLS-DA for X/G, Y/G and Y/X.

Supplementary Tables

Table S1 All compounds were characterized in different parts of CX by UHPLC/Q-Orbitrap MS Analys	is

No.	RT [min]	Identification	Formula	Theoretic al Mass	Calculated Mass (Da)	Error (ppm)	Class	X vs. G	Y vs. G
1	0.826	DI -lysine	C.H. N.O.	(Da) 147.1128	147.1127	-0.71	amino acide	J	-
י ז	0.020			[M+H]⁺ 156.0768	[M+H] ⁺ 156.0766	-0.71		¥	-
2	0.837	L-histidine	$C_6H_9N_3O_2$	[M+H]⁺ 175,1190	[M+H]⁺ 175,1188	-0.98	amino acids	-	
3	0.859	DL-arginine	$C_6H_{14}N_4O_2$	[M+H] ⁺	[M+H]+	-0.87	amino acids	\downarrow	\downarrow^{***}
4	0.887	choline	$C_5H_{13}NO$	104.1070 [M+H] ⁺	104.1073 [M+H] ⁺	2.972	alkaloids	-	-
5	0.897	D-(-)-glutamine	$C_5H_{10}N_2O_3$	147.0764 [M+H] ⁺	147.0761 [M+H]⁺	-2.17	amino acids	-	-
5	0.9	asparagine	$C_4H_8N_2O_3$	133.0608 [M+H] ⁺	133.0606 [M+H] ⁺	-1.27	amino acids	-	\downarrow^{***}
7	0.902	threonine	$C_4H_9NO_3$	120.0655 [M+H] ⁺	120.0655 [M+H]+	-0.16	amino acids	-	\downarrow^{***}
8	0.908	gluconic acid	$C_6H_{12}O_7$	195.0499 [M-H]⁻	195.0504 [M-H] ⁻	2.414	saccharides	√**	\downarrow^{***}
£	0.908	D-raffinose	$C_{18}H_{32}O_{16}$	503.1607 [M-H]	503.1619 [M-H]	2.462	saccharides	-	-
LO	0.913	nystose	$C_{24}H_{42}O_{21}$	665.2135 [M-H] ⁻	665.2151 [М-Н] ⁻	2.429	saccharides	-	\downarrow^{***}
11	0.918	α,α-trehalose	$C_{12}H_{22}O_{11}$	341.1078 [M-H]	341.1086 [M-H]	2.234	saccharides	-	-
12	0.928	D-(-)-quinic acid	$C_7H_{12}O_6$	193.0707 [M+H] ⁺	193.0705 [M+H] ⁺	-0.85	others	-	-
13	0.929	D-(-)-fructose	$C_6H_{12}O_6$	179.0550 [M-H] ⁻	179.0554 [M-H] ⁻	2.234	saccharides	-	^ ***
.4	0.944	cytidine	$C_9H_{13N_3O_5}$	244.0928 [M+H] ⁺	244.0925 [M+H] ⁺	-1.22	nucleosides	-	\downarrow^{***}
.5	0.957	adenine	$C_5H_5N_5$	136.0618 [M+H] ⁺	136.0616 [M+H]+	-1.26	amino acids	-	-
6	0.964	adenosine	$C_{10}H_{13}N_5O_4$	268.1040 [M+H] ⁺	268.1037 [M+H] ⁺	-1.23	nucleosides	-	\downarrow^{***}
.7	0.967	pipecolic acid	$C_6H_{11}NO_2$	130.0863 [M+H] ⁺	130.0865 [M+H] ⁺	1.882	alkaloids	-	-
8	0.971	citric acid	C ₆ H ₈ O ₇	191.0186 [M-H] ⁻	191.0193 [M-H] ⁻	3.513	short-chain fatty acids	-	\downarrow^{***}
9	0.975	trans-aconitic acid	$C_6H_6O_6$	173.0081 [M-H] ⁻	173.0083 [M-H] ⁻	1.362	short-chain fatty acids	-	\downarrow^{***}
0	0.976	2- hydroxyphenylal anine	$C_9H_{11}NO_3$	182.0812 [M+H]⁺	182.0809 [M+H] ⁺	-1.48	amino acids	-	-
21	0.984	shikimic acid	$C_7 H_{10} O_5$	173.0444 [M-H] ⁻	173.045 [М-Н] ⁻	3.179	short-chain fatty acids	-	^ ***
22	1.013	4-oxoproline	$C_5H_7NO_3$	130.0499 [M+H] ⁺	130.0498 [M+H]+	-0.54	nucleosides	\downarrow^{***}	-
23	1.211	uridine	$C_9H_{12N_2O_6}$	245.0768 [M+H] ⁺	245.0763 [M+H] ⁺	-2.09	nucleosides	-	-
24	1.212	nicotinic acid	$C_6H_5NO_2$	124.0393 [M+H] ⁺	124.0394 [M+H] ⁺	0.766	alkaloids	-	-
5	1.218	isocitric acid	$C_6H_8O_7$	191.0186 [M-H] ⁻	191.0192 [M-H] ⁻	2.989	short-chain fatty acids	-	\downarrow^{***}
6	1.236	cis-aconitic acid	$C_6H_6O_6$	173.0081 [M+H] ⁺	173.008 [M+H] ⁺	-0.37	short-chain fatty acids	-	\downarrow^{***}
7	1.257	2'- deoxyadenosine	$C_{10}H_{13}N_5O_3$	252.1091 [M+H] ⁺	252.109 [M+H]+	-0.46	nucleosides	-	-
8	1.291	DL-norleucine	$C_6H_{13}NO_2$	132.1019 [M+H] ⁺	132.1018 [M+H] ⁺	-0.8	amino acids	\downarrow^{**}	\downarrow
!9	1.293	guanine	$C_5H_5N_5O$	152.0567 [M+H] ⁺	152.0565 [M+H] ⁺	-1.23	nucleosides	-	-
30	1.295	guanosine	$C_{10}H_{13}N_5O_5$	284.0989 [M+H] ⁺	284.0986 [M+H] ⁺	-1.21	nucleosides	-	-
31	1.308	2- hydroxycinnami c acid	$C_9H_8O_3$	165.0546 [M+H]⁺	165.0545 [M+H]⁺	-0.73	phenolic acids	-	-
32	1.496	isoleucine	C ₆ H ₁₃ NO ₂	132.1019	132.1016	-2.31	amino acids	-	-

				[M+H]+	[M+H]+				
33	1.542	2'-O- methyladenosin e	$C_{11}H_{15}N_5O_4$	282.1197 [M+H] ⁺	282.1193 [M+H] ⁺	-1.35	nucleosides	-	-
34	1.595	valylproline	$C_{10}H_{18}N_2O_3$	215.1390 [M+H]*	215.1389 [M+H] ⁺	-0.55	amino acids	\downarrow^{**}	\downarrow^{***}
35	1.685	2'-O- methylguanosin e	$C_{11}H_{15}N_5O_5$	298.1146 [M+H] ⁺	298.1141 [M+H] ⁺	-1.66	nucleosides	-	↓ ***
36	1.833	5- (hydroxymethyl) -4-methoxy-2,5- dihydrofuran-2- one	C ₆ H ₈ O ₄	145.0495 [M+H]*	145.0494 [M+H]*	-0.93	others	^ *	^ ***
37	1.885	thymine	$C_5H_6N_2O_2$	127.0502 [M+H] ⁺	127.0503 [M+H] ⁺	0.756	nucleosides	\downarrow^{***}	-
38	2.202	L-phenylalanine	$C_9H_{11}NO_2$	166.0863 [M+H]+	166.086 [M+H]+	-1.54	amino acids	-	-
39	2.288	pantothenic acid	$C_9H_{17}NO_5$	220.1179 [M+H] ⁺	220.1176 [M+H] ⁺	-1.59	alkaloids	-	-
40	2.713	protocatechuic acid	$C_7H_6O_4$	153.0182 [M-H] ⁻	153.0185 [M-H] ⁻	1.731	aromatic acids and its esters	-	^ ***
41	2.74	glycyl-L-leucine	$C_8H_{16}N_2O_3$	189.1234 [M+H]+	189.1232 [M+H] ⁺	-0.89	amino acids	√***	\downarrow^{***}
42	2.806	neochlorogenic acid	$C_{16}H_{18}O_9$	355.1024 [M+H] ⁺	355.1017 [M+H] ⁺	-1.85	phenylethanoid glycosides	^** *	^** *
43	2.825	pyrpgallol	$C_6H_6O_3$	127.0390 [M+H] ⁺	127.0389 [M+H] ⁺	-0.56	short-chain fatty acids	-	\uparrow
44	2.85	5'-S-methyl-5'- thioadenosine	$C_{11}H_{15}N_5O_3$ S	298.0968 [M+H]+	298.0966 [M+H] ⁺	-0.79	alkaloids	^ ***	^ ***
45	3.027	leucylproline	$C_{11}H_{20}N_2O_3$	229.1547 [M+H]+	229.1544 [M+H]+	-1.17	amino acids	ψ^{**}	\downarrow^{***}
46	3.046	esculin	$C_{15}H_{16}O_9$	341.0867 [M+H]+	341.0864 [M+H]+	-0.9	coumarins	-	^ ***
47	3.048	3-O-(β-D- glucopyranosyl)- caffeoyl quinic acid	$C_{22}H_{28}O_{14}$	517.1552 [M+H]+	517.1553 [M+H]⁺	0.228	phenylethanoid glycosides	↑	-
48	3.122	2,3,5,6- tetramethylpyra zine (3aR,4aS,5R,7aS, 8S,9aR)-5- hydroxy-4a,8-	$C_8H_{12}N_2$	137.1073 [M+H] ⁺	137.1072 [M+H] ⁺	-0.91	alkaloids	\downarrow	↓ ***
49	3.126	dimethyl-3- methyleneoctah ydroazuleno[6,5 -b]furan- 2,6(3H,4H)- dione	$C_{15}H_{20}O_4$	265.1434 [M+H]*	265.1432 [M+H] ⁺	-0.89	others	-	-
50	3.224	L-tryptophan	$C_{11}H_{12}N_2O_2$	205.0972 [M+H] ⁺	205.097 [M+H] ⁺	-0.75	amino acids	-	-
51	3.226	4- indolecarbaldeh vde	C ₉ H ₇ NO	146.0600 [M+H] ⁺	146.0599 [M+H] ⁺	-0.96	alkaloids	-	-
52	3.227	indole-3-acrylic acid	$C_{11}H_9NO_2$	188.0706 [M+H] ⁺	188.0704 [M+H] ⁺	-1.09	short-chain fatty acids	-	-
53	3.469	caffeic acid	$C_9H_8O_4$	181.0495 [M+H] ⁺	181.0492 [M+H] ⁺	-1.85	phenolic acids	个***	^** *
54	3.47	chlorogenic acid	$C_{16}H_{18}O_9$	355.1024 [M+H] ⁺	355.1014 [M+H] ⁺	-2.7	phenylethanoid glycosides	^ ***	^ ***
55	3.507	2,5- dihydroxybenzal dehyde	$C_7H_6O_3$	139.0390 [M+H]⁺	139.0389 [M+H] ⁺	-0.51	phenolic acids	-	个***
56	3.54	7-hydroxy-6- methoxy-2H- chromen-2-one	$C_{10}H_8O_4$	193.0495 [M+H] ⁺	193.0493 [M+H] ⁺	-1.22	coumarins	-	^** *
57	3.617	isofraxidin	$C_{11}H_{10}O_5$	223.0601 [M+H]+	223.0598 [M+H]+	-1.34	coumarins	^** *	\downarrow^{***}

58	3.64	cryptochlorogen ic acid	$C_{16}H_{18}O_9$	355.1024 [M+H]*	355.1017 [M+H] ⁺	-1.85	phenylethanoid glycosides	^ ***	^** *
59	3.765	gentisic acid	$C_7H_6O_4$	153.0182 [M-H] ⁻	153.0185 [M-H] ⁻	1.731	aromatic acids and its esters	-	-
60	3.782	fraxetin	$C_{10}H_8O_5$	209.0444 [M+H] ⁺	209.0443 [M+H] ⁺	-0.72	coumarins	^ ***	-
61	4.028	2,4- dihydroxycinna mic Acid	C ₉ H ₈ O ₄	181.0495 [M+H]+	181.0495 [M+H]+	-0.19	phenolic acids	-	^**
62	4.049	2-(2-amino-3- methylbutanami do)-3- phenylpropanoi c acid	$C_{14}H_{20}N_2O_3$	265.1547 [M+H] ⁺	265.1546 [M+H]⁺	-0.26	alkaloids	↓ **	↓ ***
63	4.056	isophthalic acid	$C_8H_6O_4$	167.0339 [M+H] ⁺	167.0342 [M+H]+	1.885	aromatic acids and its esters	-	\downarrow^{***}
64	4.087	4-caffeoylquinic acid	$C_{16}H_{18}O_{9}$	355.1024 [M+H]⁺	355.1019 [M+H] ⁺	-1.29	phenylethanoid glycosides	^ ***	^ ***
65	4.108	2,3,4,9- tetrahydro-1H- β-carboline-3- carboxylic acid	$C_{12}H_{12}N_2O_2$	217.0972 [M+H]⁺	217.0971 [M+H]⁺	-0.25	alkaloids	↓ **	\downarrow^{***}
66	4.134	vallinic acid	$C_8H_8O_4$	169.0495 [M+H] ⁺	169.0493 [M+H]⁺	-1.39	phenolic acids	-	↓ ***
67	4.174	3-O-p- coumaroylquinic acid	C ₁₆ H ₁₈ O ₈	339.1074 [M+H] ⁺	339.1071 [M+H] ⁺	-1.01	phenylethanoid glycosides	-	^ ***
68	4.258	4,5- dicaffeoylquinic acid	$C_{25}H_{24}O_{12}$	517.1341 [M+H]+	517.1339 [M+H]+	-0.3	phenylethanoid glycosides	-	^ ***
69	4.44	3- hydroxyscopolet	$C_{10}H_8O_5$	209.0444 [M+H]+	209.0441 [M+H] ⁺	-1.67	coumarins	^** *	-
70	4.464	3-feruloylquinic acid	$C_{17}H_{20}O_9$	369.1180 [M+H]⁺	369.1178 [M+H]⁺	-0.57	phenylethanoid glycosides	-	-
71	4.467	(Z)-ferulic acid	$C_{10}H_{10}O_4$	195.0652 [M+H] ⁺	195.0651 [M+H] ⁺	-0.44	phenolic acids	-	-
72	4.482	N-acetyl-D- alloisoleucine	$C_8H_{15}NO_3$	174.1125 [M+H] ⁺	174.1125 [M+H] ⁺	0.173	amino acids	-	-
73	4.77	cyclo(leucylproly l)	$C_{11}H_{18}N_2O_2$	211.1441 [M+H]+	211.1441 [M+H] ⁺	-0.02	alkaloids	\downarrow^{***}	\downarrow^{**}
74	4.881	rutin	$C_{27}H_{30}O_{16}$	611.1607 [M+H]⁺	611.1599 [M+H]⁺	-1.25	flavonoids	-	个** '
75	4.883	phenylalanine	$C_{10}H_{13}NO_2$	180.1019 [M+H] ⁺	180.1017 [M+H] ⁺	-1.14	alkaloids	\uparrow	^**
76	4.923	vanillin	$C_8H_8O_3$	153.0546 [M+H] ⁺	153.0546 [M+H] ⁺	-0.14	phenolic acids	-	\downarrow^{***}
77	4.933	2,4- dihydroxybenzoi c acid	$C_7H_6O_4$	153.0182 [М-Н] ⁻	153.0185 [M-H] ⁻	1.731	aromatic acids and its esters	-	个** *
78	5.104	quercetin-3β-D- glucoside 3-O-	$C_{21}H_{20}O_{12}$	465.1028 [M+H] ⁺	465.1025 [M+H] ⁺	-0.54	flavonoids	-	^ ***
79	5.2	neohesperidosid e kaempferol	$C_{27}H_{30}O_{15}$	595.1657 [M+H] ⁺	595.1655 [M+H] ⁺	-0.41	flavonoids	-	^ **'
80	5.227	scopoletin	$C_{10}H_8O_4$	193.0495 [M+H] ⁺	193.0493 [M+H] ⁺	-1.22	coumarins	-	^ **'
81	5.307	(E)-ferulic acid	$C_{10}H_{10}O_4$	195.0652 [M+H] ⁺	195.0652 [M+H] ⁺	0.075	phenolic acids	-	↓ **'
82	5.379	fraxinol	$C_{11}H_{10}O_5$	223.0601 [M+H] ⁺	223.06 [M+H] ⁺	-0.45	coumarins	^***	\downarrow^{**}
83	5.478	dihydroxyphenyl)-3,5,7- trihydroxy-4H- chromen-4-one	$C_{15}H_{10}O_7$	303.0499 [M+H]*	303.0497 [M+H] ⁺	-0.76	flavonoids	-	^ **'
84	5.482	trifolin	$C_{21}H_{20}O_{11}$	449.1078	449.1078	-0.08	flavonoids	-	个**'
				1IVI+H1 ⁺	$1N_{1}+H_{1}^{+}$				

86	5.516	1,3-dicaffeoyl	CarHa4O1a	[M+H] ⁺ 517.1341	[M+H]⁺ 517.1337	-0.68	phenylethanoid	_	\wedge
00	5.510	quinic acid 1-caffeovlquinic	0251124012	[M+H]⁺ 355.1024	[M+H] ⁺ 355,1017	0.00	glycosides phenylethanoid		1
87	5.666	acid	$C_{16}H_{18}O_9$	[M+H] ⁺	[M+H] ⁺	-1.85	glycosides	-	\uparrow
88	5.67	cis-caffeic acid	$C_9H_8O_4$	[M+H] ⁺	[M+H]*	-1.3	phenolic acids	-	\uparrow
89	5.829	quercetin	$C_{15}H_{10}O_7$	303.0499 [M+H]⁺	303.0497 [M+H] ⁺	-0.76	flavonoids	-	\uparrow
		6"-0-		507,1133	507,1133				
90	5.83	acetylisoquercitr in 3- {[(2R,3S,4S,5R,6 S)-6-{[2-(3,4- dibydroxynhenyl	$C_{23}H_{22}O_{13}$	[M+H]*	[M+H] ⁺	-0.03	flavonoids	-	个
91	5.831)-5,7-dihydroxy- 4-oxo-4H- chromen-3- yl]oxy}-3,4,5- trihydroxyoxan- 2-yl]methoxy}-3- oxopropanoic acid	$C_{24}H_{22}O_{15}$	551.1031 [M+H] ⁺	551.1029 [M+H]*	-0.45	others		ſ
		0,0-ulliyul0xy-7-		223 0601	223 0599				
92	5.832	methylisocouma rin	$C_{11}H_{10}O_5$	[M+H]*	[M+H] ⁺	-0.9	others	个**	-
93	5.91	senkyunolide	C12H18O4	227.1278	227.1274	-1.7	phthalide	-	\downarrow
		J/N 1	12 10 4	[M+H]*	[M+H] ⁺		monomers		
94	5.91	3-methylsalicylic acid	$C_8H_8O_3$	153.0546 [M+H]⁺	153.0545 [M+H] ⁺	-0.79	aromatic acids and its esters	-	\downarrow
0.5		1,3-	<u> </u>	517.1341	517.1332	4.65	phenylethanoid		•
95	5.98	acid	C ₂₅ H ₂₄ O ₁₂	[M+H] ⁺	[M+H] ⁺	-1.65	glycosides	-	T
96	6.054	indolecarbaldeh yde 2-(2,4-	C ₉ H ₇ NO	146.0600 [M+H] ⁺	146.0599 [M+H] ⁺	-0.96	alkaloids	\downarrow^{***}	-
97	6.066	dihydroxyphenyl)-3,5,7- trihydroxy-4H- chromen-4-one	$C_{15}H_{10}O_7$	303.0499 [M+H] ⁺	303.0496 [M+H] ⁺	-1.09	flavonoids	-	ſ
98	6.21	azelaic acid	$C_9H_{16}O_4$	187.0965 [M-H] ⁻	187.0969 [M-H] ⁻	2.216	short-chain fatty acids	-	\uparrow
99	6.312	senkyunolide J/N 2	$C_{12}H_{18}O_4$	227.1278 [M+H]+	227.1274 [M+H] ⁺	-1.7	phthalide monomers	\downarrow^{***}	\downarrow
100	6.346	(3Z)-3- butylidene-4,5- dihydro-4,5- dihydroxy- 1(3H)- isobenzofurano ne	$C_{12}H_{14}O_4$	223.0965 [M+H]*	223.0964 [M+H]+	-0.38	phthalide monomers	-	\downarrow
101	6.486	3,4,5- tricaffeoylquinic acid	$C_{34}H_{30}O_{15}$	679.1657 [M+H] ⁺	679.1647 [M+H] ⁺	-1.54	phenylethanoid glycosides	-	\uparrow
102	6.492	fisetin	$C_{15}H_{10}O_6$	287.0550 [M+H]+	287.0552 [M+H]⁺	0.646	flavonoids	-	\uparrow
103	6.545	scoparone	$C_{11}H_{10}O_4$	207.0652 [M+H] ⁺	207.0651 [M+H] ⁺	-0.41	coumarins	-	-
104	6.629	isochlorogenic acid B	$C_{25}H_{24}O_{12}$	517.1341 [M+H]+	517.1337 [M+H] ⁺	-0.68	phenylethanoid glycosides	-	\uparrow
105	6,669	senkyunolide	$C_{12}H_{12}O_{12}$	247.0941	247.0939	-0.73	phthalide	-	Л.
102	0.009	I/H 1 (3S,3aR,10R)-(-)-	C ₁₂ (1 ₁₆ O ₄	[M+Na] ⁺	[M+Na] ⁺	-0.75	monomers	-	¥
106	6.823	10- hydroxysedanoli	$C_{12}H_{18}O_3$	211.1329 [M+H]+	211.1332 [M+H]+	1.558	phthalide monomers	-	\uparrow
		, ,		1 · · · · 1	r				

		(3Z)-3- butylidene-4,5- dihydro-6,7-							
107	6.912	dihydroxy- 1(3H)- isobenzofurano ne	$C_{12}H_{14}O_4$	223.0965 [M+H] ⁺	223.0962 [M+H]⁺	-1.28	phthalide monomers	-	
108	6.930	(3R)-3-butyi- 3,6,7- trihydroxy- 1(3H)- isobenzofurano	$C_{12}H_{14}O_5$	239.0914 [M+H]+	239.0914 [M+H]⁺	0	phthalide monomers	-	
109	6.96	ne chuanxiongnolid e R2	C ₁₂ H ₁₈ O ₄	227.1278 [M+H]*	227.1275 [M+H]+	-1.26	phthalide monomers	\downarrow^{***}	``
110	6.963	senkyunolide I/H 2 3,4,5- trihydroxy-6-	$C_{12}H_{16}O_4$	247.0941 [M+Na] ⁺	247.094 [M+Na]+	-0.32	phthalide monomers	-	``
111	6.968	(hydroxymethyl) oxan-2-yl 2- (prop-1-en-2-yl)- 2,3-dihydro-1- benzofuran-5-	$C_{18}H_{22}O_8$	367.1387 [M+H]*	367.1387 [M+H] ⁺	-0.12	others	个***	``
112	7.291	carboxylate 3-carboxyethyl- phthalide	$C_{12}H_{18}O_2$	195.1380 [M+H]⁺	195.138 [M+H]⁺	0.223	phthalide monomers	-	,
113	7.441	robinetin	C ₁₅ H ₁₀ O ₇	303.0499	303.0498	-0.43	flavonoids	-	
114	7.529	4,5,6- trihydroxy- 1(3H)- Isobenzofurano ne 3-butyl-4 7-	$C_{12}H_{12}O_5$	237.0758 [M+H]*	237.0755 [M+H] ⁺	-1.05	phthalide monomers	-	
115	8.029	3-butyl-4,7- dihydroxyphthal	$C_{12}H_{14}O_4$	223.0965 [M+H]*	223.0964 [M+H] ⁺	-0.38	phthalide monomers	-	``
116	8.284	(3S,3aR,4R)-4- hydroxy- sedanolide (P) 2 butyl 7	$C_{12}H_{18}O_3$	211.1329 [M+H]⁺	211.1327 [M+H] ⁺	-0.81	phthalide monomers		``
117	8.305	hydroxy-3- methoxyphthali de	$C_{13}H_{16}O_4$	237.1121 [M+H] ⁺	237.1119 [M+H]+	-0.99	phthalide monomers	^ ***	-
118	8.427	8-{3-oxo-2-[(2E)- 2-penten-1-yl]- 1-cyclopenten- 1-yl}octanoic acid	$C_{18}H_{28}O_3$	293.2111 [M+H]⁺	293.2105 [M+H] ⁺	-2.12	long-chain fatty acids and its eaters	个*	,
119	8.471	psoralen	$C_{11}H_6O_3$	187.0390 [M+H]⁺	187.0388 [M+H]+	-0.91	coumarins	-	
120	8.571	cyanidin 2-	$C_{15}H_{10}O_6$	287.0550 [M+H]*	287.0549 [M+H] ⁺	-0.4	flavonoids	-	
121	8.579	hydroxyphenyl valerate (35.3a8.65)-6-	$C_{11}H_{14}O_3$	195.1016 [M+H]*	195.1016 [M+H] ⁺	0.15	aromatic acids and its esters	-	
122	8.743	hydroxy- sedanolide	$C_{12}H_{18}O_3$	211.1329 [M+H]*	211.1332 [M+H] ⁺	1.558	phthalide monomers	-	
123	8.803	bergapten	$C_{12}H_8O_4$	217.0495 [M+H]*	217.0492 [M+H] ⁺	-1.54	coumarins	-	
124	8.852	s-(s- hydroxybutyl)- 1(3H)- isobenzofurano ne	$C_{12}H_{14}O_3$	207.1016 [M+H] ⁺	207.1015 [M+H] ⁺	-0.34	phthalide monomers	-	

		tetranyaro-3- propylidene- 1(3H)- isobenzofurano		[MI+H].	[MI+H].		monomers		
126	8.948	3-butyl-6,7- dihydroxyphthal ide	$C_{12}H_{14}O_4$	223.0965 [M+H]+	223.0964 [M+H] ⁺	-0.38	phthalide monomers	-	$\downarrow_{*,}$
127	9.122	senkyunolide D	$C_{12}H_{14}O_4$	223.0965 [M+H] ⁺	223.0963 [M+H] ⁺	-0.83	phthalide monomers	\checkmark	$\downarrow^{*:}$
128	9.127	senkyunolide K	$C_{12}H_{16}O_3$	209.1172 [M+H] ⁺	209.117 [M+H] ⁺	-1.06	phthalide monomers	-	-
129	9.327	hydroxyphthalid e	$C_{12}H_{14}O_3$	207.1016 [M+H]*	207.1013 [M+H] ⁺	-1.31	phthalide monomers	-	$\downarrow_{*,}$
130	9.337	senkyunolide G	$C_{12}H_{16}O_3$	209.1172 [M+H]*	209.1172 [M+H] ⁺	-0.1	phthalide monomers	-	\downarrow^{*}
131	9.542	senkyunolide F	$C_{12}H_{14}O_3$	207.1016 [M+H]* 223.0965	207.1013 [M+H] ⁺ 223.0962	-1.31	phthalide monomers	-	\downarrow^{*}
132	9.552	ethyl ferulate (3R,3aR)- 3a,4,5,6-	$C_{12}H_{14}O_4$	[M+H]*	[M+H]*	-1.28	coumarins	\checkmark	$\downarrow^{*:}$
133	9.669	tetrahydro-3- propyl-1(3H)- isobenzofurano ne (4Z)-4-	$C_{11}H_{16}O_2$	181.1223 [M+H] ⁺	181.1221 [M+H] ⁺	-1.14	phthalide monomers	-	个*
134	9.777	butylidenehexah ydrooxireno[e]is obenzofuran- 6(1aH)-one	$C_{12}H_{16}O_3$	209.1172 [M+H]*	209.1172 [M+H] ⁺	-0.1	phthalide monomers	\downarrow	$\psi^{*:}$
135	9.78	senkyunolide E (E)-3- butylidene- 4.5.6-	$C_{12}H_{12}O_3$	205.0859 [M+H] ⁺	205.0856 [M+H] ⁺	-1.56	phthalide monomers	-	-
136	9.853	trihydroxy- 1(3H)- Isobenzofurano ne	$C_{12}H_{12}O_5$	237.0758 [M+H]⁺	237.0756 [M+H] ⁺	-0.63	phthalide monomers	-	\downarrow^*
137	9.88	4-hydroxy-3- butylphthalide	$C_{12}H_{14}O_3$	207.1016 [M+H] ⁺	207.1015 [M+H] ⁺	-0.34	phthalide monomers	-	\downarrow^*
138	9.988	acetophenone	C ₈ H ₈ O	121.0648 [M+H]*	121.0649 [M+H] ⁺	0.896	others	-	-
139	10.17 6	butyl benzoate	$C_{11}H_{14}O_2$	179.1067 [M+H] ⁺	179.1064 [M+H] ⁺	-1.43	aromatic acids and its esters	-	$\downarrow_{*,}$
140	3	exoxyligustilide	$C_{12}H_{14}O_3$	[M+H]+	[M+H]+	-1.31	monomers	-	\downarrow^*
141	10.34 4	senkyunolide C	$C_{12}H_{12}O_3$	205.0859 [M+H]*	205.0857 [M+H] ⁺	-1.08	phthalide monomers	-	-
142	10.59 5	senkyunolide M/Q 1	$C_{16}H_{22}O_4$	279.1591 [M+H]*	279.1586 [M+H] ⁺	-1.74	phthalide monomers	-	-
143	10.60 2	senkyunolide L	$C_{12}H_{15}O_3CI$	243.0782 [M+H]*	243.0781 [M+H] ⁺	-0.61	phthalide monomers	-	-
144	10.71 7	3-coumaric acid	$C_9H_8O_3$	163.0390 [M-H] ⁻	163.0394 [M-H] ⁻	2.634	coumarins	-	\downarrow^*
145	10.78 4	4-hydroxy- butylidenephtha lide	$C_{12}H_{12}O_3$	205.0859 [M+H] ⁺	205.0858 [M+H]⁺	-0.59	phthalide monomers	-	√*
146	10.90 2	dimethyl Phthalate	$C_{10}H_{10}O_4$	195.0652 [M+H] ⁺	195.0649 [M+H] ⁺	-1.46	aromatic acids and its esters	-	\downarrow^*
147	11.25 4	senkyunolide M/Q 2	$C_{16}H_{22}O_4$	279.1591 [M+H]*	279.1589 [M+H]*	-0.67	phthalide monomers	\downarrow	\downarrow^*
148	11.29 7	senkyunolide B	$C_{12}H_{12}O_3$	205.0859 [M+H]*	205.0859 [M+H] ⁺	-0.1	phthalide monomers	-	\downarrow^*
	11.57	3-butyl-4,5-		279.1591	279.1586	1 74	phthalide		*

		isobenzofurano ne							
150	11.67 6	(Z)-propylidene phthalide	$C_{11}H_{12}O_2$	177.0910 [M+H]*	177.0909 [M+H] ⁺	-0.6	phthalide monomers	-	ψ^{**}
151	11.74 6	senkyunolide A	$C_{12}H_{16}O_2$	193.1223 [M+H]*	193.1221 [M+H] ⁺	-1.07	phthalide monomers	-	\downarrow^{**}
152	11.91 5	chuanxiongnolid e L5 or its isomer	$C_{24}H_{30}O_{6}$	415.2115 [M+H]⁺	415.2109 [M+H] ⁺	-1.48	phthalide dimers	-	^* *
		3-butyl-5,6-							
153	11.95 8	dihydro-4H- isobenzofuran- 1-one	$C_{12}H_{16}O_2$	193.1223 [M+H] ⁺	193.1222 [M+H]⁺	-0.55	phthalide monomers	-	ψ^{**}
154	12.07 2	phthaldialdehyd e	$C_8H_6O_2$	135.0441 [M+H]*	135.0440 [M+H] ⁺	-0.41	others	-	\downarrow^{**}
155	12.07 3	butylphthalide	$C_{12}H_{14}O_2$	191.1067 [M+H] ⁺	191.1065 [M+H]⁺	-0.82	phthalide monomers	-	\downarrow^{**}
156	12.27 8	neocnidilide	$C_{12}H_{18}O_2$	195.1380 [M+H]⁺	195.138 [M+H]+	0.223	phthalide monomers	-	\downarrow^{**}
457	12.60	(3Z)-3- butylidene-4-		219.1016	219.1014	0.70	phthalide		
121	1	memoxy-1(3H)- isobenzofurano ne	U ₁₃ H ₁₄ U ₃	[M+H] ⁺	[M+H]+	-U.78	monomers	-	-
158	12.81 6	E-ligustilide	$C_{12}H_{14}O_2$	191.1067 [M+H] ⁺	191.1064 [M+H] ⁺	-1.34	phthalide monomers	-	\downarrow^{**}
159	12.92 6	cnidilide	$C_{12}H_{18}O_2$	195.1380 [M+H]*	195.1377 [M+H] ⁺	-1.31	pnthalide monomers	-	\downarrow^{**}
160	12.96 7	E- butenylphthalid e	$C_{12}H_{12}O_2$	189.0910 [M+H] ⁺	189.0909 [M+H]+	-0.56	phthalide monomers	-	\downarrow^{**}
161	13.10 5	4-methyl-6- phenyl-5,6- dihydro-2H- pyran-2-one	$C_{12}H_{12}O_2$	189.0910 [M+H]*	189.0909 [M+H]*	-0.56	others	-	ψ^{**}
162	13.11	α-linolenic acid	$C_{18}H_{30}O_2$	279.2319 [M+H] ⁺	279.2316 [M+H] ⁺	-0.92	long-chain fatty acids and its eaters	\downarrow^{**}	-
163	13.11 5	chuanxiongnolid e L5 or its isomer 2	$C_{24}H_{30}O_{6}$	415.2115 [M+H] ⁺	415.2111 [M+H]⁺	-1	phthalide dimers	-	-
165	13.30 4	Z-ligustilide	$C_{12}H_{14}O_2$	191.1067 [M+H] ⁺	191.1064 [M+H] ⁺	-1.34	phthalide monomers	-	ψ^{**}
164	13.33 2	isocnidilide	$C_{12}H_{18}O_2$	195.1380 [M+H] ⁺	195.1376 [M+H]+	-1.83	phthalide monomers	-	
166	13.68 4	chuanxiongnolid e A/B -	$C_{24}H_{28}O_5$	397.2010 [M+H]*	397.2004 [M+H] ⁺	-1.39	phthalide dimers	-	\downarrow^{**}
167	13.71 5	∠- butenylphthalid e	$C_{12}H_{12}O_2$	189.0910 [M+H] ⁺	189.0908 [M+H] ⁺	-1.09	phthalide monomers	-	√**
168	13.76 4	chuanxiongnolid e L5 or its isomer 3	$C_{24}H_{30}O_{6}$	415.2115 [M+H] ⁺	415.2106 [M+H]+	-2.2	phthalide dimers	-	-
169	13.81 7	CV-1	$C_{24}H_{30}O_5$	399.2166 [M+H] ⁺	399.2162 [M+H]+	-1	phthalide dimers	-	√**
170	13.95 3	demethywallichi lide 2	$C_{24}H_{30}O_5$	399.2166 [M+H] ⁺	399.2165 [M+H] ⁺	-0.25	phthalide dimers	-	-
171	13.98 7	3- butylhexahydro- 1(3H)- isobenzofurano ne	$C_{12}H_{20}O_2$	197.1536 [M+H]⁺	197.1537 [M+H]⁺	0.475	phthalide monomers	-	-
172	14.33 9	CII-1	$C_{24}H_{28}O_5$	397.2010 [M+H] ⁺	397.2005 [M+H] ⁺	-1.13	phthalide dimers	-	√**
173	14.91 9	2- aminooctadec- 4-yne-1.3-diol	$C_{18}H_{35}NO_2$	298.2741 [M+H]+	298.2738 [M+H]+	-0.86	iong-chain fatty acids and its eaters	-	ψ^{**}
	45 50		Ca HanO.	383 2217	383 2213	-1 01	nhthalide		. .**

	3			[M+H] ⁺	[M+H] ⁺		dimers		
	15 72	12-oxo		202 2111	203 2104		long-chain fatty		
175	0	phytodienoic	$C_{18}H_{28}O_3$	293.2111	[14:4]+	-2.46	acids and its	-	^ ***
	ð	Acid		[IVI+H]	[IVI+H]		eaters		
	46.00	9S,13R-12-		202 2444	202 2405		long-chain fatty		
176	16.22	oxophytodienoi	C18H28O3	293.2111	293.2105	-2.12	acids and its	-	^ ***
	2	c acid		[M+H]*	[M+H]*		eaters		
	16.83	3.8-dihvdro-		385,2373	385,2367		phthalide		
177	Q	diligustilide	$C_{24}H_{32}O_4$	[M+H]+	[M+H]+	-1.65	dimers	-	-
	5	uligustillue		381 2060	381 2054		nhthalide		
178	16.84	riligustilide	$C_{24}H_{28}O_4$	581.2000	561.2054	-1.67	dimense	-	-
	17.00						umers		
179	17.00	2,2'-3,3',8,8'-	C ₂₄ H ₂₈ O ₄	381.2060	381.2056	-1.14	phthalide	-	↓ ***
	5	diligustilide		[M+H]*	[M+H] ⁺		dimers		
	17.30	(Z)-3,8-dihydro-		383.2217	383.2211		phthalide		
180	9	6,6',7,3'a-	$C_{24}H_{30}O_4$	[M+H]+	[M+H]+	-1.53	dimers	-	\downarrow^{***}
	5	diligustilide		[]	[]		unitero		
181	17.66	3,8-dihydro-	Ca.HaaO.	383.2217	383.2213	-1 01	phthalide	_	_
101	2	levistilide A	C24H30O4	[M+H]*	[M+H]+	-1.01	dimers		
	17.00			205 2269	205 2264		long-chain fatty		
182	17.83	9-0x0-UDE or	C ₁₈ H ₃₀ O ₃	295.2268	295.2264	-1.26	acids and its	-	-
	4	isomer 1		[M+H]*	[M+H] ⁺		eaters		
							long-chain fatty		
183	18.16	9-oxo-ODE or	$C_{10}H_{20}O_{2}$	295.2268	295.2266	-0.58	acids and its	-	^ ***
	9	isomer 2	~10 ^{,130} ~3	[M+H]*	[M+H] ⁺	5.50	eaters		
	18 22			383 2212	383 2211		nhthalide		
184	10.23	DI-2	$C_{24}H_{30}O_4$	505.221/ [NA+L1]+	505.2214 [M+11+	-0.75	dimore	-	^ ***
	9			[IVI+H] ⁺	[IVI+H] ⁺		umers		
185	18.47	DII-1	C ₂₄ H ₃₀ O ₅	399.2166	399.216	-1.5	pnthalide	-	\downarrow^{***}
	9		24 50 5	[M+H]*	[M+H]*		dimers		-
	18.51	9-oxo-ODE or		295.2268	295.2265		long-chain fatty		
186	1	isomer 3	$C_{18}H_{30}O_3$	[M+H]+	[M+H]+	-0.92	acids and its	-	^ ***
	1	isomer 5		[[0111]	[[1111]		eaters		
107	18.63	contaunalida D		383.2217	383.2211	1 5 2	phthalide		***
107	2	senkyunoilue P	C ₂₄ Π ₃₀ O ₄	[M+H]+	[M+H]+	-1.55	dimers	-	\mathbf{V}
				381.2060	381.2058		phthalide		
188	18.8	angelicolide	$C_{24}H_{28}O_4$	[M+H]+	[M+H]+	-0.62	dimers	-	-
	18.82	chuanxiongdioli		385,2373	385,2369		phthalide		
189	7	de A	$C_{24}H_{32}O_4$	[M+H]+	[M+H]+	-1.13	dimers	-	\downarrow^{***}
	, 18.86			395 1853	395 1848		nhthalide		
190	10.00 c	BII-1	$C_{24}H_{26}O_5$	[NA:LI]+	[NA: LI]+	-1.27	dimore	-	\downarrow^{***}
	0								
101	19.03	9-oxo-ODE or		295.2268	295.2266	0.50	long-chain fatty		* **
191	4	isomer 4	$C_{18}H_{30}O_{3}$	[M+H]+	[M+H] ⁺	-0.58	acids and its	-	1
							eaters		
192	19.13	wallichilide	CarHaaOr	413.2323	413.2316	-1.57	phthalide	个**	***
	3		-2332 - 5	[M+H]*	[M+H]*		dimers		·
103	19.13	4,5-dehydro-	C. H. O.	379.1904	379.1899	-1 28	phthalide	_	个 ***
1,2,2	8	diligustilide	224112604	[M+H]+	[M+H]*	1.20	dimers		I
104	10.27	la viatali de D		381.2060	381.2054	1 67	phthalide		
194	19.27	ievisiolide B	$C_{24}H_{28}O_4$	[M+H]+	[M+H]+	-1.0/	dimers	-	-
	40.0-	methyl ester							
195	19.33	derived from	C25H32O=	413.2323	413.2316	-1.57	phthalide	\wedge^*	\downarrow^{***}
	6	angeolide	-25 52-5	[M+H]+	[M+H]*		dimers	•	·
	19 37			381 2060	381 2053		phthalide		
196	13.37 A	senkyunolide O	$C_{24}H_{28}O_4$	[M+H]+	[M+H]+	-1.93	dimers	-	个***
	T 10 20			281 2060	281 2056		nhthalida		
197	T3.22	levistolide A	$C_{24}H_{28}O_4$	301.200U	301.2U30	-1.14	dimers	-	-
	b 10.00			[IVI+H]⁺	[IVI+H]*		aimers		
198	19.66	DI-3	$C_{24}H_{30}O_4$	383.2217	383.2213	-1.01	phthalide	-	1 ***
	7	-	- 27 - 30 - 4	[M+H]+	[M+H]*		dimers		
199	19.79	DII-2	CadHanO-	399.2166	399.2166	-0	phthalide	^ ***	^ ***
±.,,,	6	511 2	C241 30 C5	[M+H]+	[M+H]+	5	dimers	1	I
200	19.87			383.2217	383.2211	1 5 3	phthalide		* **
200	9	UI-4	C ₂₄ Π ₃₀ U ₄	[M+H]+	[M+H]+	-1.53	dimers	-	.1
		(3Z)-			-				
	20.01	(3aR,6S,3'R.8S)-		381.2060	381.2061		phthalide		A month
201	1	3a.8'.6.3'-	$C_{24}H_{28}O_4$	[M+H]+	[M+H]+	0.168	dimers	-	个***
	-	diligustilide		[]	[]		a		
	20 10	ampastinue		401 2222	401 2215		nhthalida		
202	20.10	FII-1	$C_{24}H_{32}O_5$	401.2323	401.2313	-1.87	dimore	\downarrow^{***}	^ ***
	0 20 14			[IVI+H]"	[IVI+H]'		anners		
202	20.11	DI-5	$C_{24}H_{30}O_{4}$	383.2217	383.2212	-1.27	primailde	-	^ ***
203	_			18/11/11	10.0.111+		al una a una		

204	20.58 2	tokinolide A	$C_{24}H_{28}O_4$	581.2000 [M+H]+	581.206 [M+H]+	-0.09	dimers	-	^ **
205	20.44	chaxiongnolide F	C24H30O4	383.2217	383.2215	-0.49	phthalide	-	^ **
	9		-24 30-4	[M+H]*	[M+H] ⁺		dimers		·
206	20.55	tokiaerialide	C ₂₄ H ₂₈ O ₄	381.2060	381.2054	-1.67	phthalide	-	^* *
	9			[M+H] ⁺	[M+H] ⁺		dimers		
207	20.67	CI-1	$C_{24}H_{28}O_4$	381.2060	381.2057	-0.88	phthalide	-	个**
	4	all cic		[IVI+H]	[IVI+H]		aimers		
	20.82	4 7 10 13 16-		331 2632	331 2629		long-chain fatty		
208	20.82	docosanentaeno	$C_{22}H_{34}O_2$	551.2052 [М±Н]+	551.2025 [М±H]+	-0.78	acids and its	-	\downarrow^{**}
	0	ic acid					eaters		
	20.88	chaxiongnolide		385 2373	385 2375		nhthalide		
209	7	D	$C_{24}H_{32}O_4$	[M+H]+	[M+H]+	0.426	dimers	\downarrow^{**}	^* *
	, 20 92	b		381 2060	381 2058		nhthalide		
210	20.52	neodiligustilide	$C_{24}H_{28}O_4$	[M+H]+	[M+H]+	-0.62	dimers	-	个**
	21.06			383 2217	383 2215		nhthalide		
211	Q 21.00	DI-6	$C_{24}H_{30}O_4$	[M+H]+	[M+H]+	-0.49	dimers	-	-
	5			[10111]	[[11]]		long-chain fatty		
212	21.20	palmitoyl	CueHa=NOa	300.2897	300.2892	-1 68	acids and its	_	
	6	ethanolamide	C18/13/1002	[M+H]+	[M+H] ⁺	1.00	eaters		
							long-chain fatty		
212	21.23	(S)-1-linoleoyl	C11H20.	355.2843	355.2843	0 020	acids and ite	***	-
213	9	glycerol	C211 13804	[M+H] ⁺	[M+H] ⁺	0.035	eaters	¥	-
							long-chain fatty		
214	21.24	ninolenic acid	Coller Or	279.2319	279.2317	-0 56	acide and ite	***	. .**
214	7	philotenic aciu	C181130U2	[M+H] ⁺	[M+H] ⁺	-0.50	eaters	¥	¥
		triligustilides					Calcis		
215	21.42	$\Delta/B/C$ or its	Codd - O	588.3320	588.3318	-U 20	phthalide		木 **
212	1	isomer 1	C36H42U6	$[M+NH_4]^+$	[M+NH ₄] ⁺	-0.28	trimers	-	1
	21 /17	ISOUNDED I		285 2222	285 2220		nhthalide		
216	21.47 2	chaxiongnolide E	$C_{24}H_{32}O_4$	کرکی,23/3 [ا\]	303.2379 [M+⊔]+	1.464	dimors	-	^* *
	э			[INI+H],	[IVI+⊓]'		long choir fatter		
217	21.53	(R)-1-linoleoyl	C. H. O	355.2843	355.2838	-1 27	acide and ite	_	
21/	9	glycerol	C21H38U4	[M+H]+	[M+H]+	-1.57	acius dilu ils	-	-
							eaters		
210	21.65	oleoyl		326.3054	326.3051	0.70	long-chain fatty		**
210	3	ethanolamide	C20H39NO2	[M+H]+	[M+H]+	-0.78	acius dilu ils		\mathbf{v}
		16-					caleis		
210	21.76	±0-	C.H.O	271.2268	271.2279	1 161	acide and ite	_	
213	6	anoic acid	C16H32U3	[M+H] ⁺	[M+H] ⁺	4.101	acius dilu ils eaters	-	-
		triligustilidos					catels		
220	21.86			588.3320	588.3314	-0.06	phthalide	_	木 **
220	6	isomer?	C36H42U6	$[M+NH_4]^+$	[M+NH ₄] ⁺	-0.90	trimers	-	1
	21 97	7 7'-3 2's 7 7's		381 2050	281 2050		nhthalide		
221	21.07 2	د,د -ع,ع a,7,7 d- diligustilida	$C_{24}H_{28}O_4$	201.2000	101.2030	-0.62	dimers	-	^* *
	∠ 22.07	chuanvionadiali		נועו≠ח]` מקב ססקס	נועודחן` 20⊑ סססס		nhthalida		
222	22.07		$C_{24}H_{32}O_4$	303.23/3 [№+ Ц]+	505.237U	-0.87	dimore	\downarrow^{**}	^* *
	т	ue no		[INI+H],	[ivi+⊓]'		umers		
222	22.15	LITIIIgustilides		588.3320	588.3315	0.70	phthalide		A **
223	2	A/B/C OF Its	C ₃₆ H ₄₂ U ₆	[M+NH ₄] ⁺	[M+NH ₄] ⁺	-0.79	trimers	-	17**
		isomer 3		-	-		lang that for		
224	22.15	hexadecanamid		256.2635	256.2632		iong-chain fatty		A ++
224	6	е	C ₁₆ H ₃₃ NO	[M+H]+	[M+H]+	-1.14	acids and its	-	个**
					-		eaters		
225	22.19	and a start to the	C 11 C	255.2319	255.2316	4.04	iong-chain fatty		
225	8	paimitoleic acid	$C_{16}H_{30}O_2$	[M+H]+	[M+H]+	-1.01	acids and its	-	-
							eaters		
	22.53			282.2791	282.2789		long-chain fatty		
226	2	oleamide	C ₁₈ H ₃₅ NO	[M+H]+	[M+H]+	-0.85	acids and its	-	^ **
	-			[]	[]		eaters		
	22 74	triligustilides		588 3320	588,3314		phthalide		
227	22.74 7	A/B/C or its	$C_{36}H_{42}O_{6}$	500.5520 [M±NI⊔ 1+	555.5514 [Мтип 1+	-0.96	trimers	-	^ **
	,	isomer 4					unners		
	23 1/	triligustilides		288 2220	588 2216		nhthalide		
228	20.14 1	A/B/C or its	$C_{36}H_{42}O_{6}$	500.5520 [М±NI⊔ 1+	[Мтип ₁₊	-0.62	trimers	-	^ **
	т	isomer 5		[IVI+INH4]	[ועודוערק]		umers		
220	24.58	lunonona		425.3778	425.3777	0.22	othors		木 **
229	4	iuperione	C ₃₀ H ₄₈ O	[M+H]+	[M+H]+	-0.22	others	-	11.4
				-	-				

		c acid		[M+H]+	[M+H] ⁺		acids and its eaters	
231	25.67 9	γ-linolenic acid ethyl ester	$C_{20}H_{34}O_2$	307.2632 [M+H]⁺	307.263 [M+H]+	-0.51	long-chain fatty acids and its - eaters	↓***
232	27.59 5	α-eleostearic acid	$C_{18}H_{30}O_2$	279.2319 [M+H] ⁺	279.2317 [M+H]⁺	-0.56	long-chain fatty acids and its - eaters	\downarrow^{***}
233	27.82 9	erucamide	$C_{22}H_{43}NO$	338.3417 [M+H] ⁺	338.3415 [M+H]⁺	-0.71	long-chain fatty acids and its - eaters	-
234	28.00 5	β-eleostearic acid	$C_{18}H_{30}O_2$	279.2319 [M+H] ⁺	279.2318 [M+H]+	-0.2	long-chain fatty acids and its - eaters	\downarrow^{***}

Notes: Compared with the content of compounds in rhizomes, " \uparrow " means up regulation and " \downarrow " means down regulation; n = 7;*p < 0.05, **p < 0.01, ***p < 0.001.

Table S2 Compounds were	characterized in	different parts of	f CX by GC-MS	Analysis
-------------------------	------------------	--------------------	---------------	----------

_			Matc					
Pea	RT	Mass	h	Name	CAS	Class of	X vs. G	Y vs. G
k	(min)		Score			compound		
1	4.257	136	93	α-thujene	002867-05-2	monoterpenes	个**	-
2	4.399	136	94	(+)-α-pinene	000080-56-8	monoterpenes	\uparrow	-
3	5.14	136	96	sabinene	003387-41-5	monoterpenes	^ **	-
4	5.222	136	90	β-pinene	000127-91-3	monoterpenes	^ **	-
5	5.452	136	97	β-myrcene	000123-35-3	monoterpenes	^ **	\downarrow^{**}
6	6.04	136	96	(+)-2-carene	1000149-94-6	monoterpenes	^ **	\downarrow^{**}
7	6.222	134	97	<i>p</i> -cymene	000099-87-6	aromatics	^ **	\downarrow^{**}
8	6.322	136	87	<i>β</i> -terpinene	000099-84-3	monoterpenes	^ **	\uparrow^*
9	7.016	136	96	γ-terpinene	000099-85-4	monoterpenes	^** *	\downarrow^*
10	7.745	136	98	α -terpinolene	000586-62-9	monoterpenes	^ **	\downarrow^*
11	9.522	150	91	5-pentylcyclohexa-1,3-diene	056318-84-4	olefins	^** *	\downarrow^{**}
12	10.075	154	97	(-)-terpinen-4-ol	020126-76-5	monoterpenes	^** *	\downarrow^{***}
13	10.281	150	91	p-cymen-8-ol	005208-37-7	alcohols	-	\downarrow^{***}
14	13.121	184	97	tridecane	000629-50-5	alkanes	个***	
15	13.533	150	90	2-methoxy-4-vinylphenol	007786-61-0	aromatics	-	\downarrow^{***}
16	13.992	136	91	1,5,5-trimethyl-6-methylene- cyclohexene	000514-95-4	monoterpenes	-	↓ ***
17	14.316	150	91	1,4-cyclohexadiene-1,2- dicarboxylic anhydride	004773-89-1	anhydrides	-	\uparrow
18	14.374	162	94	valerophenone	001009-14-9	ketones	\downarrow^{***}	\downarrow^{***}
19	14.939	170	90	(Z)-1-methoxy-4-decene	1000333-84-8	ethers	-	\downarrow^{***}
20	15.057	204	91	(-)-β-elemene	000515-13-9	sesquiterpenes	-	-
21	15.257	178	96	methyleugenol	000093-15-2	ethers	\downarrow^{***}	\downarrow^{***}
22	15.292	184	90	dodecanal	000112-54-9	aldehyde	^** *	-
23	15.474	204	94	(-)-α-cedrene	000546-28-1	sesquiterpenes	^** *	-
24	15.569	204	99	caryophyllene	000087-44-5	sesquiterpenes	\uparrow^*	^ ***
25	15.651	204	90	himachalene-1,4-diene	1000412-94-8	sesquiterpenes	\downarrow^{***}	\downarrow^{***}
26	15.768	204	98	γ-elemene	029873-99-2	sesquiterpenes	-	-
27	16.104	204	96	(E)-β-eamesene	018794-84-8	sesquiterpenes	-	^ ***
28	16.145	204	96	humulene	006753-98-6	sesquiterpenes	-	\downarrow^{***}
				(3 <i>R</i> ,3a <i>S</i> ,7 <i>S</i> ,8a <i>R</i>)-3,8,8-trimethyl-				
29	16.416	204	91	6-methyleneoctahydro-1H-3a,7-	000546-28-1	sesquiterpenes	-	\downarrow^{***}
				methanoazulene				
30	16.468	204	94	eudesma-4(14),7(11)-diene	000515-17-3	sesquiterpenes	-	-
31	16.58	204	99	germacrene D	023986-74-5	sesquiterpenes	^***	个***
32	16.68	204	99	β-selinene	017066-67-0	sesquiterpenes	\downarrow^{***}	-
33	16.804	204	95	α-selinene	000473-13-2	sesquiterpenes	-	-
34	16.892	204	91	α -farnesene	000502-61-4	sesquiterpenes	-	个***
35	17.063	204	98	α -amorphene	000483-75-0	sesquiterpenes	-	-
36	17.18	204	98	δ -amorphene	016729-01-4	sesquiterpenes	\downarrow^{***}	^ ***
37	17.704	204	96	germacrene B	015423-57-1	sesquiterpenes	-	^ ***
38	17.762	220	99	ylangenol	115728-41-1	sesquiterpenes	-	^ ***
39	18.01	220	99	spathulenol	006750-60-3	sesquiterpenes	\downarrow^{***}	-
40	18.086	220	98	caryophyllene oxide	001139-30-6	sesquiterpenes	\downarrow^{***}	^ ***
41	18.268	222	91	carotol	000465-28-1	sesquiterpenes	-	-
42	18.321	194	90	1.13-tetradecadiene	021964-49-8	olefins	-	-

43	18.362	222	93	cedrol	000077-53-2	sesquiterpenes	\downarrow^{***}	\downarrow^{***}
44	18.78	196	98	hexahydro-3-butylphthalide	003553-34-2	phthalides	-	-
45	18.986	190	94	3-n-butylphthalide	006066-49-5	phthalides	-	-
46	19.133	196	96	cyclotetradecane	000295-17-0	alkanes	-	\downarrow^{***}
47	19.268	188	98	Z-butylidenephthalide	072917-31-8	phthalides	-	-
48	19.339	192	90	N,N'-diacetyl-1,4- phenylenediamine	000140-50-1	amide	\downarrow^{***}	\downarrow^{***}
49	19.398	220	92	1R,7S,E)-7-isopropyl-4,10- dimethylenecyclodec-5-enol	081968-62-9	sesquiterpenes	-	^ ***
50	20.06	192	98	senkyunolide A	062006-39-7	phthalides	-	\downarrow^{***}
51	20.22	190	99	Z-ligustilide	081944-08-3	phthalides	-	-
52	20.333	224	98	cetene	000629-73-2	olefins	-	√***
53	20.598	206	97	3-pentyl-4,5- dihydroisobenzofuran-1(3H)-one	128575-99-5	phthalides	-	-
54	20 768	190	99	F-ligustilide	081944-09-4	nhthalides		
55	20.700	278	99	neonhytadiene	000504-96-1	olefins		^ ***
56	21.056	268	90	6,10,14-trimethylpentadecan-2- one	000502-69-2	ketones	-	` 个***
57	21.239	242	95	pentadecanoic acid	001002-84-2	fatty acid and its esters	-	^ ***
58	21.433	224	99	cyclohexadecane	000295-65-8	alkanes	-	\downarrow^{***}
59	21.603	264	91	linolenyl alcohol	000506-44-5	alcohols	-	^ **
60	21.892	270	99	methyl palmitate	000112-39-0	fatty acid and its esters	-	^ ***
61	22.297	256	99	n-hexadecanoic acid	000057-10-3	fatty acid and its esters	\downarrow^{***}	^ ***
62	22.345	278	87	dibutyl phthalate	1000356-78-4	anhydrides	^ ***	\uparrow
63	22.574	284	98	ethyl palmitate	000628-97-7	fatty acid and its esters	\downarrow^{***}	-
64	22.621	282	99	eicosane	000112-95-8	alkanes	-	^ ***
65	23.068	224	99	senkyunolide H/I	094596-27-7	phthalides	^ ***	^ *
66	23.58	296	99	heneicosane	000629-94-7	alkanes	-	^ ***
67	23.627	296	99	trans-13-octadecenoic acid, methyl ester	1000333-61-3	fatty acid and its esters	-	^ ***
68	23.762	296	90	phytol	000150-86-7	alcohols	-	\uparrow^*
69	23.968	280	99	linoleic acid	000060-33-3	fatty acid and its esters	-	^ ***
70	24.191	308	99	linoleic acid ethyl ester	000544-35-4	fatty acid and its esters	\downarrow^{***}	个***
71	24.244	310	95	(E)-9-octadecenoic acid ethyl ester	006114-18-7	fatty acid and its esters	-	^ ***
72	24.503	310	94	docosane	000629-97-0	alkanes	个***	^ ***
73	25.38	282	96	heptadecane	000112-95-8	alkanes	^** *	^ ***
74	25.891	336	93	butyl 9,12-octadecadienoate	1000336-54-1	fatty acid and its esters	-	^ ***
75	26.221	338	99	tetracosane	000646-31-1	alkanes	-	<u> </u>

Notes: Compared with the content of compounds in rhizomes, " \uparrow " means up regulation and " \downarrow " means down

regulation; n = 7; *p < 0.05, **p < 0.01, ***p < 0.001.

Table S3 Formula list of phtha	alide monomers
--------------------------------	----------------

substituent	D = 7	D = 6	D = 5	D = 4	D = 3
none	$C_{12}H_{12}O_2^*$	$C_{12}H_{14}O_{2}^{*}$	$C_{12}H_{16}O_{2}^{*}$	$C_{12}H_{18}O_2^*$	C ₁₂ H ₁₂ O ₂ *
1 OH	$C_{12}H_{12}O_3^*$	$C_{12}H_{14}O_3^*$	C ₁₂ H ₁₆ O ₃ *	$C_{12}H_{18}O_3^*$	
2 OH	$C_{12}H_{12}O_4*$	$C_{12}H_{14}O_4*$	C ₁₂ H ₁₆ O ₄ *	$C_{12}H_{18}O_4*$	
3 OH	$C_{12}H_{12}O_5$	$C_{12}H_{14}O_5$	$C_{12}H_{16}O_5^*$	$C_{12}H_{18}O_5^*$	
1 CH ₃	$C_{13}H_{14}O_2^*$	$C_{13}H_{16}O_{2}^{*}$	C ₁₃ H ₁₈ O ₂	$C_{13}H_{20}O_2$	
1 OCH ₃	C ₁₃ H ₁₄ O ₃	$C_{13}H_{16}O_3^*$	C ₁₃ H ₁₈ O ₃ *	C ₁₃ H ₂₀ O ₃	
1 OH 1 OCH_3	$C_{13}H_{14}O_4$	$C_{13}H_{16}O_4*$	C ₁₃ H ₁₈ O ₄	C ₁₃ H ₂₀ O ₄ *	
1 OH 、1 OAc	$C_{14}H_{14}O_5$	$C_{14}H_{16}O_5$	C ₁₄ H ₁₈ O ₅ *	C ₁₄ H ₂₀ O ₅ *	
1 OH 、1 COC ₃ H ₇	$C_{16}H_{18}O_4$	$C_{16}H_{20}O_4$	C ₁₆ H ₂₂ O ₄ *	C ₁₆ H ₂₄ O ₄ *	
1 OH、1 =0	$C_{12}H_{10}O_3$	$C_{12}H_{12}O_3$	$C_{12}H_{14}O_3^*$	$C_{12}H_{16}O_3^*$	
1 OAng		C17H20Q4*			

D: degree of unsaturation; *: phthalides have been found

Table S4 Formula list of phthalide dimers

monomers units	l (no	II (1	III (2 OH)	IV (open	V (open

		substituent)	OH)		loop, CH₃OH)	loop, H ₂ O)
A	n-butylidenephthalide couple with n-butylidenephthalide	$C_{24}H_{24}O_4*$	$C_{24}H_{24}O_5$	$C_{24}H_{24}O_{6}$		
В	n-butylidenephthalide couple with ligustilide	$C_{24}H_{26}O_4*$	$C_{24}H_{26}O_5$	$C_{24}H_{26}O_{6}$	$C_{25}H_{30}O_5*$	$C_{24}H_{28}O_5$
С	ligustilide couple with ligustilide	$C_{24}H_{28}O_4*$	$C_{24}H_{28}O_5^*$	$C_{24}H_{28}O_6$	$C_{25}H_{32}O_5^*$	$C_{24}H_{30}O_5^*$
D	ligustilide couple with senkyunolide A	$C_{24}H_{30}O_4*$	$C_{24}H_{30}O_5^*$	C ₂₄ H ₃₀ O ₆ *		
Ε	ligustilide couple with neosolactone	$C_{24}H_{32}O_4*$	$C_{24}H_{32}O_5$	$C_{24}H_{32}O_{6}$		
F	senkyunolide A couple with senkyunolide A	$C_{24}H_{32}O_4*$	$C_{24}H_{32}O_5^*$	$C_{24}H_{32}O_{6}$		

*: phthalides have been found

Table 00 I offici Lation Sites of pricilande anners

polymerization site		monomer unit-2							
		3a/7a	3/8	6/7	3a/6	4/7	7/7a		
	22/72	3a.3a',7a.7a'	3a.8′,7a.3′	3a.6′,7a.7′			3a.7a',7a.7'		
monomer unit-1	5d/7d	3a.7a',7a.3a'	3a.3′,7a.8′	3a.7′,7a.6′			3a.7′,7a.7a′		
	3/8		2 2 0 0 0	3.7′,8.6′	3.3a',8.6'				
			5.5,0.0		3.6′,8.3a′				
	<i>c 1</i> 7			6.7′,7.6′	6.6′,7.3a′	67'7 1'	67'775'		
	0/ /			6.6′,7.7′	6.3a',7.6'	0.7,7.4	0.7,7.7a		

Table S6 The percentage of compounds in volatile oils from different parts of CX

Compounds	Rhizome	Fibrous root	Stem and leaf
Sesquiterpenes	8.58%	5.80%	13.79%
Monoterpenes	2.29%	11.81%	0.19%
Phthalides	81.13%	75.32%	71.39%
Alkanes	0.43%	0.51%	4.00%
Olefins	0.89%	2.22%	1.52%
Aromatics	0.93%	1.43%	0.16%
Fatty acid and its esters	0.47%	0.16%	3.42%
Alcohols	0.09%	0.24%	0.01%
Ethers	0.23%	0.06%	0.00%
Anhydrides	0.13%	0.60%	0.04%
Ketones	0.41%	0.21%	0.04%
Aldehyde	0.00%	0.04%	0.00%
Amide	2.87%	1.01%	0.21%
Total	98.45%	99.44%	94.77%

 Table S7 The normalized peak area of compounds in methanol extracts from different parts of CX

Compounds	Rhizome	Fibrous root	Stem and leaf
Amino acids	5.90	5.79	3.58
Nucleosides	1.90	1.27	1.06
Phthalide monomers	241.30	222.29	71.64
Phthalide dimers	14.65	17.60	17.94
Phthalide trimers	0.02	0.03	1.58
Phenolic acids	5.68	4.86	2.53
Flavonoids	0.00	0.00	0.77
Coumarins	0.19	0.30	0.22
Phenylethanoid glycosides	2.61	6.89	8.10
Aromatic acids and its esters	0.96	1.12	0.18
Short-chain fatty acids	3.33	4.96	1.74
Long-chain fatty acids and its eaters	3.24	2.75	2.91
Saccharides	10.13	13.76	10.54
Alkaloids	2.30	1.97	2.55
Others	1.14	0.98	0.84
Total	293.36	284.56	126.19