Primer	Forward primer (5'-3')	Reverse primer (5'-3')	Reference
PCR			
411-BSH	CATGCCATGGGAATGTGTACTGGTTTAAGATTC	CGGCTCGAGCTAGTAAGTCACAAGACTGGTTG	This study
338F/806R	ACTCCTACGGGA-GGCAGCAG	GGACTACHVGGGTWTCTAAT	
qPCR			
CYP7A1	ACAGAAGCATAGACCCAA	TGCCAAACAGCGTTAGAT	13
CYP8B1	AAGGCTGGCTTCCTGAGCTT	AACAGCTCATCGGCCTCATC	
CYP27A1	TGCCTGGGTCGGAGGAT	GAGCCAGGGCAATCTCATACTT	18
CYP7B1	TAGCCCTCTTTCCTCCACTCATA	GAACCGATCGAACCTAAATTCCT	
FXR	ACATCCCCATCTCTGCAC	TGTGAGGGCTGCAAAGGTTT	
SHP	CCTGGAGTCTTTCTGGAGCCTTGA	TGTTGCAGGTGTGCGATGTGG	
FGFR4	GCATCTTTCAGGGGACACCA	TTGTACCAGTGACGACCACG	19
KLB	TCAGGCCTGCATAGGAAATG	CTGGATCGGGAGACTTAGGA	20
LRH-1	TTGAGTGGGCCAGGAGTAGT	ACGCGACTTCTGTGTGTGAG	
FGF15	ACGTCCTTGATGGCAATCG	GAGGACCAAAACGAACGAAATT	
IBABP	CAGGAGACGTGATTGAAAGGG	GCCCCCAGAGTAAGACTGGG	
ABCG5	GCAGGGACCGAATTGTGATTG	AGGGATTGGAATGTTCAGGACAG	
ABCG8	GGCTCAGGATCGGCTTTCAC	CCTTGACACAGGCATGAAGCA	21
HMGCR	GGACCAACCTTCTACCTC	CCATCACAGTGCCACATAC	
LDL-R	CAGTCCCAGGCAGCGTAT	TTGATCTTGGCGGGTGTT	
rpL32	TCTGGTCCACAACGTCAAGG	GGATTGGTGACTCTGATGGC	

1 Supplemental Table 1 PCR and quantitative PCR primers used in this study

3 Supplemental Table 2 Primer sequence for bsh qPCR

Group Expected ²³	Primer sequence (5'-3')	F/R	Reference <i>bsh</i> (Accession number)*	Product size (bp)
n	TGTGTGAGCAACGAGATGGC	F	AAR39435, BAF39637, AAF67801, AAN24611,	105
Z	ACACGAACGAAACGCGACGG	R	CDB23390, BAQ98062, BAP83517, AAX86039	
2 ۸	AYTTTGGHMGWAAYYTHGAY	F	AAR39435, BAF39637, AAF67801, AAN24611,	105
3A	RTTNARDCCDGCHATVCCWAVHCC	R	CDB23390, BAQ98062, BAP83517, AAX86039	
20	GAGGATGGACTAGGAATGGC	F	ABE00605, CDK34338	104
30	TGGAATAAACTCGAACGGCG	R		

4 *Accession number of the reference *bsh* is from EMBL database (http://www.ebi.ac.uk/)

5

7 Supplemental Figure legend:

8 Figure S1: Physiological and biochemical indexes (serum lipid: A; and liver lipid: B) were used to 9 evaluate the fat-reducing function of BSH strain in these five groups (ND: normal diet; HFD: high-fat 10 diet; HFD+NB5462: high-fat diet + empty plasmid control NB5462; HFD+YB334-H: high-fat diet + 11 recombinant YB334 with high BSH activity; and HFD+YB334-L: high-fat diet + recombinant YB334 12 with low BSH activity). TC: total cholesterol; TG: triacylglycerols; LDL-C: low-density lipoprotein cholesterol; and HDL-C: high-density lipoprotein cholesterol. Values were expressed as mean ± SD (n 13 14 = 8). * Represents a significant (p < 0.01) difference from HFD+NB5462 group. ** Represents a significant (p < 0.0001) difference from HFD+NB5462 group. # p < 0.01, ## p < 0.0001. 15 16 Figure S2: Fecal bile acid levels were used to evaluate the pathway of BSH involved in bile acid 17 18 metabolism in these five groups (ND: normal diet; HFD: high-fat diet; HFD+NB5462: high-fat diet + 19 empty plasmid control NB5462; HFD+YB334-H: high-fat diet + recombinant YB334 with high BSH 20 activity; and HFD+YB334-L: high-fat diet + recombinant YB334 with low BSH activity). UDCA: ursodeoxycholic acid; α -/ β -/ ω -MCA: α -/ β -/ ω -muricholic acid; CA: cholic acid; CDCA: 21 chenodeoxycholic acid; DCA: deoxycholic acid; LCA: lithocolic acid; TUDCA: tauroursodeoxycholic 22 acid; $T\alpha(\beta/\omega)MCA$: tauro- $\alpha(\beta/\omega)$ -muricholic acid; TCA: taurocholic acid; TCDCA: 23 24 taurochenodeoxycholic acid; TDCA: taurodeoxycholic acid; TLCA: taurolithocolic acid. Values were expressed as mean \pm SD (n = 8). * (p < 0.01) and ** (p < 0.0001) represent a significant difference 25 26 from HFD+NB5462 group, respectively. 27

28 Figure S3: Alpha diversity (A), Bacteria composition (phylum level, B), and Heatmap clustering

29 analysis of biodiversity (C) of mouse gut microbiota in these four groups (HFD+NB5462: high-fat diet

30 + empty plasmid control NB5462; HFD: high-fat diet; HFD+YB334-H: high-fat diet + recombinant

31 YB334 with high BSH activity; ND: normal diet).

32

33 Figure S4: Cecum short-chain fatty acids (SCFAs) were detected to verify the relationship between

34 intestinal flora and fat metabolism. HFD+NB5462: high-fat diet + empty plasmid control NB5462;

35 HFD: high-fat diet; HFD+YB334-H: high-fat diet + recombinant YB334 with high BSH activity; ND:

36 normal diet. Values were expressed as mean \pm SD (n = 8). ** Represents a significant (p < 0.0001)

37 difference from HFD+NB5462 group.

38

A. Serum lipid

Fig. S1: Physiological and biochemical indexes (serum lipid: A; and liver lipid: B) were used to evaluate 41 the fat-reducing function of BSH strain in these five groups (ND: normal diet; HFD: high-fat diet; 42 HFD+NB5462: high-fat diet + empty plasmid control NB5462; HFD+YB334-H: high-fat diet + 43 recombinant YB334 with high BSH activity; and HFD+YB334-L: high-fat diet + recombinant YB334 with 44 45 low BSH activity). TC: total cholesterol; TG: triacylglycerols; LDL-C: low-density lipoprotein cholesterol; and HDL-C: high-density lipoprotein cholesterol. Values were expressed as mean \pm SD (n = 8). * 46 Represents a significant (p < 0.01) difference from HFD+NB5462 group. ** Represents a significant (p 47 < 0.0001) difference from HFD+NB5462 group. # *p* < 0.01, ## *p* < 0.0001. 48

49

Fig. S2: Fecal bile acid levels were used to evaluate the pathway of BSH involved in bile acid metabolism 52 in these five groups (ND: normal diet; HFD: high-fat diet; HFD+NB5462: high-fat diet + empty plasmid 53 control NB5462; HFD+YB334-H: high-fat diet + recombinant YB334 with high BSH activity; and 54 HFD+YB334-L: high-fat diet + recombinant YB334 with low BSH activity). UDCA: ursodeoxycholic acid; 55 α -/ β -/ ω -MCA: α -/ β -/ ω -muricholic acid; CA: cholic acid; CDCA: chenodeoxycholic acid; DCA: 56 deoxycholic acid; LCA: lithocolic acid; TUDCA: tauroursodeoxycholic acid; $T\alpha(\beta/\omega)MCA$: tauro- $\alpha(\beta/\omega)$ -57 muricholic acid; TCA: taurocholic acid; TCDCA: taurochenodeoxycholic acid; TDCA: taurodeoxycholic 58 acid; TLCA: taurolithocolic acid. Values were expressed as mean \pm SD (n = 8). * (p < 0.01) and ** (p < 59 0.0001) represent a significant difference from HFD+NB5462 group, respectively. 60

- 61
- 62

Fig. S3: Alpha diversity (A), Bacteria composition (phylum level, B), and Heatmap clustering analysis of
biodiversity (C) of mouse gut microbiota in these four groups (HFD+NB5462: high-fat diet + empty
plasmid control NB5462; HFD: high-fat diet; HFD+YB334-H: high-fat diet + recombinant YB334 with
high BSH activity; ND: normal diet).

Fig. S4: Cecum short-chain fatty acids (SCFAs) were detected to verify the relationship between intestinal flora and fat metabolism. HFD+NB5462: high-fat diet + empty plasmid control NB5462; HFD: high-fat diet; HFD+YB334-H: high-fat diet + recombinant YB334 with high BSH activity; ND: normal diet. Values were expressed as mean \pm SD (n = 8). ** Represents a significant (*p* < 0.0001) difference from HFD+NB5462 group.