Supplementary data

Curcumin alleviates hepatic steatosis by improving mitochondrial function in postnatal overfed rats and fatty L02 cells through SIRT3 pathway

Short title: Curcumin regulates hepatic mitochondrial function

Susu Du¹, Xiaolei Zhu¹, Nan Zhou¹, Wen Zheng¹, Wei Zhou¹, Xiaonan Li^{1,2*}

¹Department of Child Health Care, Children's Hospital of Nanjing Medical University,

Nanjing, 210008, Jiangsu Province, China

²Institute of Pediatric Research, Nanjing Medical University, Nanjing, 210029,

Jiangsu Province, China

*Corresponding author:

Xiaonan Li,

Department of Children's Health Care,

Children's Hospital of Nanjing Medical University,

72 Guangzhou Road,

Nanjing 210008, P.R. China.

E-mail: xiaonan6189@163.com

	Normal	High fat
	diet (%)	diet (%)
Casein	18.92	18.92
L-Cystine	0.28	0.28
Corn starch	48.34	39.34
Maltodextrin	3.32	3.32
Sucrose	13.0	13.0
Cellulose	4.74	4.74
Soybean oil	6.0	6.0
Lard	0.0	9.0
Vitamin mix	1.14	1.14
Mineral mix	4.26	4.26
Total	100.00%	100%
Energy (kcal/100g)	392.60	438.24

Table S1 Compositions (percentage by weight) of a normal diet and a high fat diet

The compositions were consistence with our previous study[1] and were produced by the diet manufacturing company Slac (Shanghai, China).

	NL	NH	SL	SH	SL-CUR	SH-CUR
W3						
ALT (U/L)	27.50±1.78		29.17±1.30			
AST (U/L)	151.00±11.30		161.80±9.54			
TG (mmol/L)	0.59±0.13		0.64±0.13			
CHO (mg/dL)	2.01±0.13		2.05±0.04			
HDL-c (mmol/L)	0.54 ± 0.06		0.53±0.03			
W13						
ALT (U/L)	33.13±2.34	43.50±5.89°	35.50±3.70	60.50±9.34 ^{a, b}	34.50±3.09°	39.88±7.64°
AST (U/L)	105.40±22.45	129.00±17.94	105.80±9.94	138.30±22.51	103.90±10.21	102.50±14.98
TG (mmol/L)	0.35±0.02	0.62±0.06ª	0.47 ± 0.05^{a}	0.79±0.11 ^{a, b}	$0.33 \pm 0.04^{b, c}$	$0.54{\pm}0.09^{a}$
CHO (mg/dL)	1.03±0.06	1.45±0.10 ^a	1.42±0.11ª	1.68 ± 0.17^{a}	1.10±0.02 ^{b, c}	1.35±0.11ª
HDL-c (mmol/L)	0.34±0.02	0.19±0.01 ^{a, b}	0.27±0.02 ^{a, c}	0.15±0.02 ^{a, b}	0.34±0.03 ^{b, c}	0.22±0.02 ^{a, b, c}

Table S2 Serum liver enzymes and lipid biochemical parameters in rats at W3 and W13

Data are expressed as the mean \pm SEM. n = 6 at W3 and n = 8 at W13 in each group. Student's unpaired *t*-test at W3 and one-way analysis of variance (ANOVA) with a post hoc least significant difference (LSD)-t test at W13 were performed. ^ap<0.05 versus NL group AT W13; ^bp<0.05 versus SL group at W13; ^cp<0.05 versus SH group at W13

Fig. S1 Effects of CUR on food intake (a) and energy intake (b) in rats from W4 to W13. Data are expressed as the mean \pm SEM. n = 6 at W3 and n = 8 at W13 in each group

Fig. S2 Effects of CUR on IPGTT results, AUC and serum levels of insulin in rats at W3 (a-c) and W13 (d-f). Data are expressed as the mean \pm SEM. n = 6 at W3 and n = 8 at W13 in each group. Statistical analysis was performed using Student's unpaired *t*-test at W3 and ANOVA with a post hoc least significant difference (LSD)-t test at W13. **p<0.01 versus NL group at W3; ^ap<0.05 versus NL group at W13; ^bp<0.05 versus SL group at W13;

Fig. S3 Effects of CUR on NH rats. Body weight line (a) \cdot IPGTT results and AUC (bc), serum TG (d), CHO (e) and HDL-c (f) levels and hepatic H&E staining (g) in NH rats and NH-CUR rats at W13. Data are expressed as the mean ± SEM. n = 8. Statistical analysis was performed using Student's unpaired *t*-test. *p<0.05 versus NH group

Reference

 Yang F, Zhou N, Zhu X, Min C, Zhou W, Li X (2021) n-3 PUFAs protect against adiposity and fatty liver by promoting browning in postnatally overfed male rats: a role for NRG4. J Nutr Biochem 93:108628. <u>https://doi.org/10.1016/j.jnutbio.2021.108628</u>