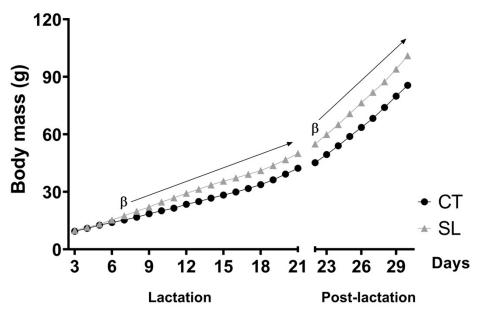
Manuscript "Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity"

Food & Function

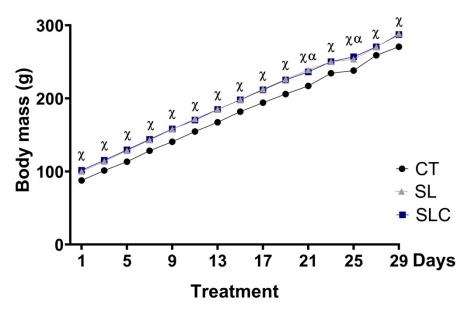
Jessika Geisebel Oliveira Neto^{a,b}, Silvia Karl Boechat^a, Juliana Santos Romão^a, Lia Rafaella Ballard Kuhnert^a, Carmen Cabanelas Pazos de Moura^b, Karen Jesus Oliveira^{a*}.

^aUniversidade Federal Fluminense, Departamento de Fisiologia e Farmacologia, Niterói, 24210-130, RJ, Brazil

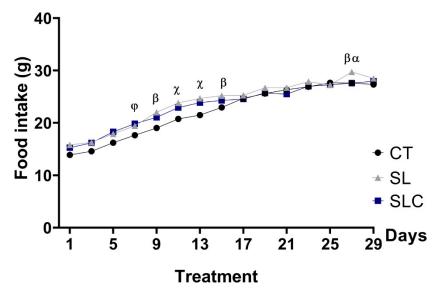
^bUniversidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, 21949-900, RJ, Brazil

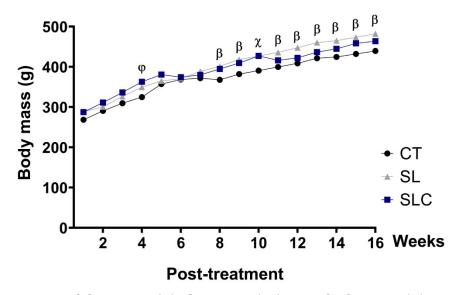

* Corresponding author

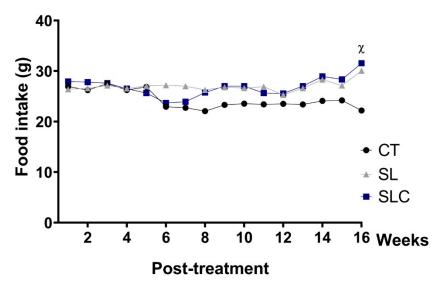
Karen Jesus Oliveira


E-mail address: karenoliveira@id.uff.br

S1: Gene sequences used to assess mRNA expression.


Gene	Protein	Sequence
Acaca	ACC1	Forward 5'-GCCTTACAGGATGGTTTGGCCTTT-3'
		Reverse 5'-AACAAATTCTGCTGGCGAAGCCAC-3'
Adrb3	ARβ3	Forward 5'-CGTTGCTTGTCTTTCTGTCTT-3'
		Reverse 5'-AGAACTCACCGCTCAACAG-3'
Atp5f1b	ATP5B	Forward 5'-GCATTTAGGGGAGAGCACCG-3'
		Reverse 5'-TTTTGATTGGTGCCCCCGAA-3'
Cox4i1	COX4I1	Forward 5'-CAGTGGCAGAATGTTGGCTA-3'
COX III	00/111	Reverse 5'-GCACACCGAAGTAGAAATGGC-3'
Dgat2	DGAT2	Forward 5'-AGGCCTTGATGGTTTCTATCCA-3'
5		Reverse 5'- GCTGCCCTTCCCCAATTAAC-3'
Fasn	FAS	Forward 5'-GTCACAGTGTCCTCAGAGTTG-3'
		Reverse 5'-AGGCCAGTGCATTAAGGATG-3'
Fgf21	FGF21	Forward 5'-CAAATCCTGGGTGTCAAAGC-3'
C		Reverse 5'-GCCTCAGACTGGTACACATTG- 3'
Gapdh	GAPDH	Forward 5'-TCTCTGCTCCTCCCTGTT-3' Reverse 5'-GTAACCAGGCGTCCGATA-3'
		Forward 5'-TTGTCGTTGCTTGTCTCC-3'
ll1b	IL1β	Reverse 5'-GTGCTGTCTGACCCATGT-3'
116	IL6	Forward 5'-TCCTACCCCAACTTCCAATGCTC-3'
		Reverse 5'-TTGGATGGTCTTGGTCCTTAGCC-3'
Lep	Leptina	Forward 5'-CCATCTTGGACAAACTCAGAATG-3'
		Reverse 5'-GACCATTGTCACCAGGATCA-3'
Lpl	LPL	Forward 5'-GCTTGTCATTCTCAGTTCCAGA-3'
		Reverse 5'-AGCCAAGAGAAGCAGTAAGATG-3'
Ndufb8	NADH	Forward 5'-TGAACCGATACACTGGGACCT-3'
	dehydrogenase	Reverse 5'-AGCCACAAAGCCGAAGAGAT-3'
Ppara	ΡΡΑRα	Forward 5'-TTCAATGCCCTCGAACTGGA-3'
		Reverse 5'-GCACAATCCCCTCCTGCAAC-3'
Pparg	PPARγ	Forward 5'-AGCAGGTTGTCTTGGATGTC-3'
		Reverse 5'-GAATTAGATGACAGTGACTTGGC-3'
Ppargc1a	PGC1α	Forward 5'-ACTGAGCTACCCTTGGGATG-3'
		Reverse 5'-TAAGGATTTCGGTGGTGACA-3'
Rplp0	36β4	Forward 5'-TTCCCACTGGCTGAAAAGGT-3'
		Reverse 5'-CGCAGCCGCAAATGC-3'
Sdhb	SDH	Forward 5'-TCGCCATTTACCGATGGGAC-3'
		Reverse 5'-GCACCATCGGTCCACACTTAT-3'
Srebf1c	SREBP1c	Forward 5'-AAAACCAGCCTCCCCAGAGC-3'
		Reverse 5'-CCAGTCCCCATCCACGAAGA-3'
Tnfa	ΤΝFα	Forward 5'-GTCTTTGAGATCCATGCCATTG-3' Reverse 5'-AGACCCTCACACTCAGATCA-3'
Ucp1	UCP1	Forward 5'-TCAACACTGTGGAAAGGGACGACT-3' Reverse 5'-TCTGCCAGTATGTGGTGGTTCACA-3'
-		Forward 5'-CCGGGTCCTTCTCGAGATTTTAT-3'
Uqcrc2	UQCRC2	Reverse 5'-AACTCAAGTTCCTGAGGCTGC-3'
		REVEISE D-AAUTUAAUTTUUTUAUUUTUU-J


S2: Body mass evolution of control litters (•) and small litter (\blacktriangle) during lactation and postlactation period. The body mass was monitored daily. Control litter (CT); small litter (SL). ' β ' Statistical differences of SL *vs* CT group. Differences between groups at the corresponding time points were analyzed by Two-way ANOVA followed by Bonferroni post-test.


S3: Body mass evolution of CT group (•), SL group (\blacktriangle), and SLC group (\blacksquare) during treatment (30 days of age until 60 days of age). The body mass was monitored 3 times a week. Control group (CT); small litter group (SL); small litter group treated with cinnamaldehyde (SLC). ' χ ' Statistical differences of SL and SLC *vs* CT group. ' α ' Statistical differences of SL *vs* SLC group. Differences between groups at the corresponding time points were analyzed by Two-way ANOVA followed by Tukey post-test.

S4: Food intake evolution of CT group (•), SL group (\blacktriangle), and SLC group (\blacksquare) during treatment (30 days of age until 60 days of age). The food intake was monitored 3 times a week. Control group (CT); small litter group (SL); small litter group treated with cinnamaldehyde (SLC). ' ϕ ' Statistical differences of SLC *vs* CT group. ' β ' Statistical differences of SL *vs* CT group. ' χ ' Statistical differences of SL and SLC *vs* CT group. ' α ' Statistical differences of SL *vs* SLC group. Differences between groups at the corresponding time points were analyzed by Two-way ANOVA followed by Tukey post-test.

S5: Body mass evolution of CT group (•), SL group (\blacktriangle), and SLC group (\blacksquare) in the post-treatment period (60 days of age until 180 days of age). The body mass was monitored 3 times a week and is represented in the graphic as a weekly measure. Control group (CT); small litter group (SL); small litter group treated with cinnamaldehyde (SLC). ' ϕ ' Statistical differences of SLC *vs* CT group. ' β ' Statistical differences of SL *vs* CT group. ' χ ' Statistical differences of SL and SLC *vs* CT group. Differences between groups at the corresponding time points were analyzed by Two-way ANOVA followed by Tukey post-test.

S6: Food intake evolution of CT group (\bullet), SL group (\blacktriangle), and SLC group (\blacksquare) in the post-treatment period (60 days of age until 180 days of age). The food intake was monitored 3 times a week and is represented in the graphic as a weekly measure. Control group (CT); small litter group (SL); small litter group treated with cinnamaldehyde (SLC). ' χ ' Statistical differences of SL and SLC *vs* CT group. Differences between groups at the corresponding time points were analyzed by Two-way ANOVA followed by Tukey post-test.